
Combining Graph
Algorithms Data Structures and Algorithms

CSE 373 WI 19 - KASEY CHAMPION 1

Last Time

We described algorithms to find:

CSE 373 SP 18 - KASEY CHAMPION 2

An ordering of the vertices so all edges go from left to right.

Topological Sort (aka Topological Ordering)

A subgraph C such that every pair of vertices in C is connected via
some path in both directions, and there is no other vertex which is
connected to every vertex of C in both directions.

Strongly Connected Component

Today: Use those algorithms to solve a bigger problem.

Why Find SCCs?
Graphs are useful because they encode relationships between arbitrary objects.

We’ve found the strongly connected components of G.

Let’s build a new graph out of them! Call it H
- Have a vertex for each of the strongly connected components
- Add an edge from component 1 to component 2 if there is an edge from a vertex inside
1 to one inside 2.

CSE 373 SP 18 - KASEY CHAMPION 3

D

C F

B EA K

J

1

3 4

2

Why Find SCCs?

That’s awful meta. Why?

This new graph summarizes reachability information of the original graph.
- I can get from A (of G) in 1 to F (of G) in 3 if and only if I can get from 1 to 3 in H.

CSE 373 SP 18 - KASEY CHAMPION 4

D

C F

B EA K

J

1

3 4

2

Why Must H Be a DAG?

H is always a DAG (i.e. it has no cycles). Do you see why?

If there were a cycle, I could get from component 1 to component 2 and back, but
then they’re actually the same component!

CSE 373 SP 18 - KASEY CHAMPION 5

Takeaways
Finding SCCs lets you collapse your graph to the meta-structure.
If (and only if) your graph is a DAG, you can find a topological sort of your graph.

Both of these algorithms run in linear time.
Just about everything you could want to do with your graph will take at least as
long.
You should think of these as “almost free” preprocessing of your graph.
-Your other graph algorithms only need to work on

- topologically sorted graphs and
- strongly connected graphs.

CSE 373 SP 18 - KASEY CHAMPION 6

A Longer Example
The best way to really see why this is useful is to do a bunch of examples.

We don’t have time. The second best way is to see one example right now...

This problem doesn’t look like it has anything to do with graphs
- no maps
- no roads
- no social media friendships

Nonetheless, a graph representation is the best one.

I don’t expect you to remember the details of this algorithm.

I just want you to see
- graphs can show up anywhere.
- SCCs and Topological Sort are useful algorithms.

CSE 373 SP 18 - KASEY CHAMPION 7

Example Problem: Final Review
We have a long list of types of problems we might want to put on the final.
- Heap insertion problem, big-O problems, finding closed forms of recurrences, graph
modeling…

- What should Erik cover in the final review – what if we asked you?

To try to make you all happy, we might ask for your preferences. Each of you gives us two
preferences of the form “I [do/don’t] want a [] problem on the review” *
We’ll assume you’ll be happy if you get at least one of your two preferences.

CSE 373 SP 18 - KASEY CHAMPION 8

*This is NOT how Erik is making the final review.

Given: A list of 2 preferences per student.
Find: A set of questions so every student gets at least one of their
preferences (or accurately report no such question set exists).

Final Creation Problem

Review Creation: Take 1
We have Q kinds of questions and S students.

What if we try every possible combination of questions.

How long does this take? O(2"#)
If we have a lot of questions, that’s really slow.

Instead we’re going to use a graph.

What should our vertices be?

CSE 373 SP 18 - KASEY CHAMPION 9

Review Creation: Take 2

Each student introduces new relationships for data:

Let’s say your preferences are represented by this table:

CSE 373 SP 18 - KASEY CHAMPION 10

If we don’t include a big-O proof, can you still be happy?

If we do include a recurrence can you still be happy?

Yes!

Big-O

NO
recurrence

Yes!
recurrence

NO

Graph
NO

Big-O

Yes!

Graph

NO

Heaps

Yes!

Heaps

Problem YES NO

Big-O X

Recurrence X

Graph

Heaps

Problem YES NO

Big-O

Recurrence X

Graph X

Heaps

Review Creation: Take 2
Hey we made a graph!

What do the edges mean?

Each edge goes from something making someone unhappy, to the only thing that could make
them happy.
-We need to avoid an edge that goes TRUE THING à FALSE THING

CSE 373 SP 18 - KASEY CHAMPION 11

NO
recurrence

NO
Big-O

We need to avoid an edge that goes TRUE THING à FALSE THING

Let’s think about a single SCC of the graph.

Can we have a true and false statement in the same SCC?

What happens now that Yes B and NO B are in the same SCC?

CSE 373 SP 18 - KASEY CHAMPION 12

NO

C

Yes

A

NO

BYes

B

NO

E

Final Creation: SCCs
The vertices of a SCC must either be all true or all false.
Algorithm Step 1: Run SCC on the graph. Check that each question-type-
pair are in different SCC.
Now what? Every SCC gets the same value.
-Treat it as a single object!
We want to avoid edges from true things to false things.
-“Trues” seem more useful for us at the end.

Is there some way to start from the end?
YES! Topological Sort

CSE 373 SP 18 - KASEY CHAMPION 13

CSE 373 SP 18 - KASEY CHAMPION 14

NO
C

Yes
A

NO
DYes

B

NO
E

Yes
C

NO
A

Yes
DNO

B

Yes
E

NO
F

Yes
F

Yes
H

Yes
G

NO
H

NO
G

CSE 373 SP 18 - KASEY CHAMPION 15

NO
C

Yes
A

NO
DYes

B

NO
E

Yes
C

NO
A

Yes
DNO

B

Yes
E

NO
F

Yes
F

Yes
H

Yes
G

NO
H

NO
G

CSE 373 SP 18 - KASEY CHAMPION 16

NO
C

Yes
A

NO
DYes

B

NO
E

Yes
C

NO
A

Yes
DNO

B

Yes
E

NO
F

Yes
F

Yes
H

Yes
G

NO
H

NO
G 1

6
5

2
3

4

CSE 373 SP 18 - KASEY CHAMPION 17

NO
C

Yes
A

NO
DYes

B

NO
E

Yes
C

NO
A

Yes
DNO

B

Yes
E

NO
F

Yes
F

Yes
H

Yes
G

NO
H

NO
G 1

6
5

2
3

4

Making the Final
Algorithm:
Make the requirements graph.

Find the SCCs.

If any SCC has including and not including a problem, we can’t make the final.

Run topological sort on the graph of SCC.

Starting from the end:
- if everything in a component is unassigned, set them to true, and set their opposites to false.

This works!!

How fast is it?

O(Q + S). That’s a HUGE improvement.

CSE 373 SP 18 - KASEY CHAMPION 18

Some More Context
The Final Making Problem was a type of “Satisfiability” problem.

We had a bunch of variables (include/exclude this question), and needed to satisfy everything in
a list of requirements.

The algorithm we just made for Final Creation works for any 2-SAT problem.

CSE 373 SP 18 - KASEY CHAMPION 19

Given: A set of Boolean variables, and a list of requirements, each of the form:
variable1==[True/False] || variable2==[True/False]

Find: A setting of variables to “true” and “false” so that all of the requirements
evaluate to “true”

2-Satisfiability (“2-SAT”)

Reductions, P vs. NP

CSE 373 SP 18 - KASEY CHAMPION 20

What are we doing?
To wrap up the course we want to take a big step back.

This whole quarter we’ve been taking problems and solving them faster.

We want to spend the last few lectures going over more ideas on how to solve problems faster,
and why we don’t expect to solve everything extremely quickly.

We’re going to
- Recall reductions – Robbie’s favorite idea in algorithm design.
- Classify problems into those we can solve in a reasonable amount of time, and those we can’t.
- Explain the biggest open problem in Computer Science

CSE 373 SP 18 - KASEY CHAMPION 21

Reductions: Take 2

You already do this all the time.
In Homework 3, you reduced implementing a hashset to implementing a
hashmap.
Any time you use a library, you’re reducing your problem to the one the
library solves.

Using an algorithm for Problem B to solve Problem A.
Reduction (informally)

Weighted Graphs: A Reduction

s

u

v
t2

2

2

1

1

s

u

v

t

s

u

v
t 2

s

u

v
t2

2

2

1

1
2

Transform Input

Unweighted Shortest Paths

Transform Output

CSE 373 SP 18 - KASEY CHAMPION 14

Reductions

It might not be too surprising that we can solve one shortest path problem
with the algorithm for another shortest path problem.
The real power of reductions is that you can sometimes reduce a problem
to another one that looks very very different.
We’re going to reduce a graph problem to 2-SAT.

CSE 373 SP 18 - KASEY CHAMPION 24

Given an undirected, unweighted graph !, color each vertex “red”
or “blue” such that the endpoints of every edge are different colors
(or report no such coloring exists).

2-Coloring

2-Coloring

Can these graphs be 2-colored? If so find a 2-coloring. If not try to explain
why one doesn’t exist.

CSE 373 SP 18 - KASEY CHAMPION 25

B

D
E

A

C B

D
E

A

C

2-Coloring

Can these graphs be 2-colored? If so find a 2-coloring. If not try to explain
why one doesn’t exist.

CSE 373 SP 18 - KASEY CHAMPION 26

B

D
E

A

C B

D
E

A

C

2-Coloring

Why would we want to 2-color a graph?
-We need to divide the vertices into two sets, and edges represent vertices
that can’t be together.

You can modify BFS to come up with a 2-coloring (or determine none exists)
-This is a good exercise!

But coming up with a whole new idea sounds like work.
And we already came up with that cool 2-SAT algorithm.
-Maybe we can be lazy and just use that!
-Let’s reduce 2-Coloring to 2-SAT!

CSE 373 SP 18 - KASEY CHAMPION 27

Use our 2-SAT algorithm
to solve 2-Coloring

A Reduction

We need to describe 2 steps

1. How to turn a graph for a 2-color problem into an input to 2-SAT

2. How to turn the ANSWER for that 2-SAT input into the answer for the original 2-

coloring problem.

How can I describe a two coloring of my graph?

-Have a variable for each vertex – is it red?

How do I make sure every edge has different colors? I need one red endpoint and

one blue one, so this better be true to have an edge from v1 to v2:

(v1IsRed || v2isRed) && (!v1IsRed || !v2IsRed)

CSE 373 SP 18 - KASEY CHAMPION 28

AisRed = True
BisRed = False
CisRed = True
DisRed = False
EisRed = True

B

D
EA

C

B

D EA

C
(AisRed||BisRed)&&(!AisRed||!BisRed)
(AisRed||DisRed)&&(!AisRed||!DisRed)
(BisRed||CisRed)&&(!BisRed||!CisRed)
(BisRed||EisRed)&&(!BisRed||!EisRed)
(DisRed||EisRed)&&(!DisRed||!EisRed)

CSE 373 SP 18 - KASEY CHAMPION 29

Transform Input

2-SAT Algorithm

Transform Output

Efficient

We’ll consider a problem “efficiently solvable” if it has a polynomial time
algorithm.

I.e. an algorithm that runs in time !(#$) where & is a constant.
Are these algorithms always actually efficient?
Well………no

Your #'((((algorithm or even your 2*+
++
⋅ #- algorithm probably aren’t

going to finish anytime soon.
But these edge cases are rare, and polynomial time is good as a low bar
-If we can’t even find an #'((((algorithm, we should probably rethink our
strategy

CSE 373 - 18AU 30

Decision Problems

Let’s go back to dividing problems into solvable/not solvable.
For today, we’re going to talk about decision problems.
Problems that have a “yes” or “no” answer.

Why?
Theory reasons (ask me later).
But it’s not too bad
- most problems can be rephrased as very similar decision problems.

E.g. instead of “find the shortest path from s to t” ask
Is there a path from s to t of length at most !?

CSE 373 - 18AU 31

P

The set of all decision problems that have an algorithm that runs in
time ! "# for some constant $.

P (stands for “Polynomial”)

The decision version of all problems we’ve solved in this class are in P.

P is an example of a “complexity class”
A set of problems that can be solved under some limitations (e.g. with
some amount of memory or in some amount of time).

CSE 373 - 18AU 32

I’ll know it when I see it.
Another class of problems we want to talk about.
“I’ll know it when I see it” Problems.

Decision Problems such that:
If the answer is YES, you can prove the answer is yes by
- Being given a “proof” or a “certificate”
- Verifying that certificate in polynomial time.

What certificate would be convenient for short paths?
-The path itself. Easy to check the path is really in the graph and really
short.

CSE 373 - 18AU 33

I’ll know it when I see it.
More formally,

It’s a common misconception that NP stands for “not polynomial”
Please never ever ever ever say that.
Please.

Every time you do a theoretical computer scientist sheds a single tear.
(That theoretical computer scientist is me)

The set of all decision problems such that if the answer is YES, there
is a proof of that which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

CSE 373 - 18AU 34

