
Lecture 21: Disjoint Sets 
with Arrays

CSE 373: Data Structures and 
Algorithms

CSE 373 19 WI - KASEY CHAMPION 1



Implementation

Use Nodes?

In modern Java (assuming 64-bit JDK) each object takes about 32 bytes
- int field takes 4 bytes
- Pointer takes 8 bytes
- Overhead ~ 16 bytes
- Adds up to 28, but we must partition in multiples of 8 => 32 bytes

Use arrays instead!
- Make index of the array be the vertex number

- Either directly to store ints or representationally

- We implement makeSet(x) so that we choose the representative

- Make element in the array the index of the parent

CSE 373 SP 18 - KASEY CHAMPION 5



Array Implementation

CSE 373 SP 18 - KASEY CHAMPION 6

1

6

3

rank = 0

4

2

105 7

0

98

11

15

13

rank = 3

14

12

1716

18

rank = 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 180 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
-1 -1 1 2 2 2 1 6 7 7 6 -1 11 12 12 11 15 15 17

Store (rank * -1) - 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
-1 -4 1 2 2 2 1 6 7 7 6 -4 11 12 12 11 15 15 17

Each “node” now only takes 4 bytes of memory instead of 32



Practice

CSE 373 SP 18 - KASEY CHAMPION 7

3

0

rank = 0

4

111

5

2

13

12

rank = 2

109

1415 8

rank = 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

rank = 1

6

7

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 0 0 -3 3 -1 -2 6 12 13 13 0 13 -3 12 12 12



Array Method Implementation
makeSet(x)
add new value to array with a rank of -1

findSet(x)
Jump into array at index/value you’re looking for, jump to parent based on element at that index, 
continue until you hit negative number

union(x, y)
findSet(x) and findSet(y) to decide who has larger rank, update element to represent new parent 
as appropriate

CSE 373 SP 18 - KASEY CHAMPION 8



Graph Design

CSE 373 SP 18 - KASEY CHAMPION 10



Graphs are about representing relationships…
Physical distances

Connections

Bloodlines

Probabilities

Sequences

States

CSE 373 SP 18 - KASEY CHAMPION 11



Scenario #1

You are going to Disneyland for spring break! 
You’ve never been, so you want to make sure 
you hit ALL the rides.

Is there a graph algorithm that would help?

BFS or DFS

How would you draw the graph?
- What are the vertices? 

Rides

- What are the edges? 

Walkways

CSE 373 19 WI - KASEY CHAMPION 12

Castle

Flag 

Pole

Dumbo

It’s a 

small 

world

Matter-

horn

Space 

Mtn

Star

Tours

Jungle

Cruise

Indiana

Jones

Splash

Mtn

Thunder

Mtn

0

1

2

3

4

5

6 7

8

9

10

BFS = 0 1 2 3 5 6 7 8 9 4 10

DFS = 0 3 5 6 7 8 9 10 1 4 2



Scenario #1 continued
Now that you have your basic graph of Disneyland 
what might the following graph items represent in 
this context?
Weighted edges
- Walkway distances
- Walking times
- Foot traffic

Directed edges
- Entrances and exits
- Crowd control for fireworks
- Parade routes

Self Loops
- Looping a ride

Parallel Edges
- Foot traffic at different times of day
- Walkways and train routes

CSE 373 19 WI - KASEY CHAMPION 13

Castle

Flag 
Pole

Dumbo

It’s a 
small 
world

Matter-
horn

Space 
Mtn

Star
Tours

Jungle
Cruise

Indiana
Jones

Splash
Mtn

Thunder
Mtn

0

1

2

3

4

5

6 7

8

9

10



Scenario #2
You are a Disneyland employee and you need 
to rope off as many miles of walkways as you 
can for the fireworks while leaving guests 
access to all the rides.

Is there a graph algorithm that would help?

MST

How would you draw the graph?
- What are the vertices? 
Rides
- What are the edges? 
Walkways with distances

CSE 373 SP 18 - KASEY CHAMPION 14

Castle

Flag 
Pole

Dumbo

It’s a 
small 
world

Matter-
horn

Space 
Mtn

Star
Tours

Jungle
Cruise

Indiana
Jones

Splash
Mtn

Thunder
Mtn

0

1

2

3

4

5

6 7

8

9

10

11

5

17

13

1210

1

9

6

4

16

7

8

3

2

15

14

Castle

Flag 
Pole

Dumbo

It’s a 
small 
world

Matter-
horn

Space 
Mtn

Star
Tours

Jungle
Cruise

Indiana
Jones

Splash
Mtn

Thunder
Mtn

0

1

2

3

4

5

6 7

8

9

10

11

5

17

13

1210

1

9

6

4

16

7

8

3

2

15

14



Scenario #3
You arrive at Disneyland and you want to visit all the 
rides, but do the least amount of walking possible. If 
you start at the Flag Pole, plan the shortest walk to 
each of the attractions.

Is there a graph algorithm that would help?

Dijkstra’s

How would you draw the graph?
- What are the vertices? 
Rides
- What are the edges? 
Walkways with distances

CSE 373 SP 18 - KASEY CHAMPION 15

Castle

Flag 
Pole

Dumbo

It’s a 
small 
world

Matter-
horn

Space 
Mtn

Star
Tours

Jungle
Cruise

Indiana
Jones

Splash
Mtn

Thunder
Mtn

0

1

2

3

4

5

6 7

8

9

10

11

5

17

13

1210

1

9

6

4

16

7

8

3

2

15

14

Castle

Flag 
Pole

Dumbo

It’s a 
small 
world

Matter-
horn

Space 
Mtn

Star
Tours

Jungle
Cruise

Indiana
Jones

Splash
Mtn

Thunder
Mtn

0

1

2

3

4

5

6 7

8

9

10

11

5

17

13

1210

1

9

6

4

16

7

8

3

2

15

14

21
23

24

28
29

11

3

5

20

13



Scenario #2b
Now that you know the shortest distance to each 
attraction, can you make a plan to visit all the 
attractions with the least amount of total walking?

CSE 373 SP 18 - KASEY CHAMPION 16

0

1

2

3

4

5

6 7

8

9

10

11

5

17

13

1210

1

9

6

4

16

7

8

3

2

15

14
Nope! This is the travelling salesman 
problem which is much more complicated 
than Dijkstra’s. 
(NP Hard, more on this later)

Castle

Flag 
Pole

Dumbo

It’s a 
small 
world

Matter-
horn

Space 
Mtn

Star
Tours

Jungle
Cruise

Indiana
Jones

Splash
Mtn

Thunder
Mtn

0

1

2

3

4

5

6 7

8

9

10

11

5

17

13

1210

1

9

6

4

16

7

8

3

2

15

14

21
23

24

28
29

11

3

5

20

13



Scenario #3
You have great taste so you are riding Space 
Mountain. Your friend makes poor choices so they 
are riding Splash Mountain. You decide to meet at 
the castle, how long before you can meet up?

CSE 373 SP 18 - KASEY CHAMPION 17

Castle

Flag 
Pole

Dumbo

It’s a 
small 
world

Matter-
horn

Space 
Mtn

Star
Tours

Jungle
Cruise

Indiana
Jones

Splash
Mtn

Thunder
Mtn

0

1

2

3

4

5

6 7

8

9

10

11

5

17

13

1210

1

9

6

4

16

7

8

3

2

15

14Is there a graph algorithm that would help?
Dijkstra’s
What information do our edges need to 
store?
Walking times
How do we apply the algorithm?

- Run Dijkstra’s from Splash Mountain.
- Run Dijkstra’s from Space Mountain.
- Take the larger of the two times.


