Disjoint Sets with Arrays
Warm Up

Using the union-by-rank and path-compression optimized implementations of disjoint-sets draw the resulting forest caused by these calls:

1. makeSet(a)
2. makeSet(b)
3. makeSet(c)
4. makeSet(d)
5. makeSet(e)
6. makeSet(f)
7. makeSet(h)
8. union(c, e)
9. union(d, e)
10. union(a, c)
11. union(g, h)
12. union(b, f)
13. union(g, f)
14. union(b, c)

Reminders:
- **Union-by-rank:** make the tree with the larger rank the new root, absorbing the other tree. If ranks are equal pick one at random, increase rank by 1
- **Path-compression:** when running findSet() update parent pointers of all encountered nodes to point directly to overall root
- **Union(x, y)** internally calls findSet(x) and findSet(y)

TreeDisjointSet<E>

state
- Collection<TreeSet> forest
- Dictionary<NodeValues, NodeLocations> nodeInventory

behavior
- makeSet(x) - create a new tree of size 1 and add to our forest
- findSet(x) - locates node with x and moves up tree to find root
- union(x, y) - append tree with y as a child of tree with x
Warm Up

Using the union-by-rank and path-compression optimized implementations of disjoint-sets draw the resulting forest caused by these calls:

1. makeSet(a)
2. makeSet(b)
3. makeSet(c)
4. makeSet(d)
5. makeSet(e)
6. makeSet(f)
7. makeSet(g)
8. makeSet(h)
9. union(c, e)
10. union(d, e)
11. union(a, c)
12. union(g, h)
13. union(b, f)
14. union(g, f)
15. union(b, c)

Reminders:
- **Union-by-rank**: make the tree with the larger rank the new root, absorbing the other tree. If ranks are equal pick one at random, increase rank by 1.
- **Path-compression**: when running findSet() update parent pointers of all encountered nodes to point directly to overall root.
- Union(x, y) internally calls findSet(x) and findSet(y)

Optimized Disjoint Set Runtime

\textbf{makeSet}(x)

- Without Optimizations: $O(1)$
- With Optimizations: $O(1)$

\textbf{findSet}(x)

- Without Optimizations: $O(n)$
- With Optimizations: Best case: $O(1)$ Worst case: $O(\log n)$

\textbf{union}(x, y)

- Without Optimizations: $O(n)$
- With Optimizations: Best case: $O(1)$ Worst case: $O(\log n)$
Kruskal’s

\textbf{KruskalMST(Graph G)}
initialize each vertex to be a connected component
sort the edges by weight
\textbf{foreach} (edge \((u, v)\) in sorted order) {
 if (\(u\) and \(v\) are in different components) {
 add \((u, v)\) to the MST
 Update \(u\) and \(v\) to be in the same component
 }
}

\textbf{KruskalMST(Graph G)}
initialize a disjointSet, call \textit{makeSet}() on each vertex
sort the edges by weight
\textbf{foreach} (edge \((u, v)\) in sorted order) {
 if (\textit{findSet}(u) \neq \textit{findSet}(v)) {
 add \((u, v)\) to the MST
 \textit{union}(u, v)
 }
}

\begin{align*}
 t_m &= O(1) \\
 t_f &= O(\log V) \\
 t_u &= O(\log V) \\
\end{align*}

Aside: \(O(V + E \log V + E)\) if you apply ackermann
KruskalMST(Graph G)
 initialize a disjointSet, call makeSet() on each vertex
 sort the edges by weight
 foreach(edge (u, v) in sorted order){
 if(findSet(u) != findSet(v)){
 add (u,v) to the MST
 union(u, v)
 }
 }
KruskalMST(Graph G)
 initialize a disjointSet, call makeSet()
on each vertex
 sort the edges by weight
 foreach(edge (u, v) in sorted order){
 if(findSet(u) != findSet(v)){
 union(u, v)
 }
 }
Implementation

Use Nodes?

In modern Java (assuming 64-bit JDK) each object takes about 32 bytes
- int field takes 4 bytes
- Pointer takes 8 bytes
- Overhead ~ 16 bytes
- Adds up to 28, but we must partition in multiples of 8 => 32 bytes

Use arrays instead!
- Make index of the array be the vertex number
 - Either directly to store ints or representationally
 - We implement makeSet(x) so that we choose the representative
- Make element in the array the index of the parent
Array Implementation

rank = 0

rank = 3

rank = 3

Store \((\text{rank} \times -1) - 1\)

Each “node” now only takes 4 bytes of memory instead of 32
Practice

rank = 2

rank = 0

rank = 1

rank = 2

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-3</td>
<td>3</td>
<td>-1</td>
<td>-2</td>
<td>6</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>0</td>
<td>13</td>
<td>-3</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>
Array Method Implementation

makeSet(x)

add new value to array with a rank of -1

findSet(x)

Jump into array at index/value you’re looking for, jump to parent based on element at that index, continue until you hit negative number

union(x, y)

findSet(x) and findSet(y) to decide who has larger rank, update element to represent new parent as appropriate
Graph Review

Graph Definitions/Vocabulary
- Vertices, Edges
- Directed/undirected
- Weighted
- Etc...

Graph Traversals
- Breadth First Search
- Depth First Search

Finding Shortest Path
- Dijkstra’s

Topological Sort

Minimum Spanning Trees
- Primm’s
- Kruskal’s

Disjoint Sets
- Implementing Kruskal’s
Interview Prep

Treat it like a standardized test
- Cracking the Coding Interview
- Hackerrank.com
- Leetcode.com

Typically 2 rounds

Tech screen
“on site” interviews

4 general types of questions
- Strings/Arrays/Math
- Linked Lists
- Trees
- Hashing
- Optional: Design

It’s a conversation!
1. T – Talk
2. E – Examples
3. B – Brute Force
4. O – Optimize
5. W – Walk through
6. I – Implement
7. T – Test