grif e

‘ 3 < " (w .
.’fd’b&ﬁ'&;@(;

2B~ o

~ | .y
< e .
N

—

A

_.

TR T P T
S . nedd e
0

e ~.,’~L£ .
Ty e -

R

LeCtu e 20: DiSjOint Sets ZISgEO?ZCﬁ:mDSataStructuresand

CSE 373 19 WI - KASEY CHAMPION

Kruskal’s Algorithm Implementation

KruskalMST (Graph G)
initialize each vertex to be an independent component
sort the edges by weight
foreach (edge (u, v) 1in sorted order) {

if(u and v are in different components) {

add (u,v) to the MST
update u and v to be in the same component

KruskalMST (Graph G)
foreach (V : vertices) {

makeMST (v) ;
}

sort edges in ascending order by weight

foreach (edge (u, v)) {
if (£findMST (v) is not in f£indMST (u)) {

union (u, V)

New ADT

Set ADT Disjoint-Set ADT

state state
Set of elements Set of Sets
- Elements must be unique! - Disjoint: Elements must be unique across sets
- Norequired order - Norequired order

- Each set has representative
Count of Sets

Count of Elements

behavior i
. . behavior
create(x) - creates a new set with a single
member, x makeSet(x) — creates a new set within the disjoint set where the only
add(x) - adds x into set if it is unique, otherwise member is x. Picks representative for set
add is ignored findSet(x) — looks up the set containing element x, returns
remove(x) — removes x from set representative of that set

size() — returns current number of union(x, y) — looks up set containing x and set containing y, combines two
elements in set sets into one. Picks new representative for resulting set

Y ——< 7 TN\
®) (a) ©
® @

SE 373 SP 18 - KASEY CHAMPION

Example

new()
makeSet(a)
makeSet(b)
makeSet(c)
makeSet(d)
makeSet(e)
findSet(a)
findSet(d)

union(a, c)

CSE 373 WI 18 — MICHAEL LEE

6

Example

new()
makeSet(a)
makeSet(b)
makeSet(c)
makeSet(d)
makeSet(e)
findSet(a)
findSet(d)
union(a, c)

union(b, d)

CSE 373 WI 18 — MICHAEL LEE

7

Example

new()

makeSet(a)

makeSet(b)

makeSet(c)
makeSet(d)
makeSet(e)

findSet(a)

findSet(d)

union(a, c)

union(b, d)

findSet(a) == findSet(c)
findSet(a) == findSet(d)

CSE 373 WI 18 — MICHAEL LEE 8

Implementation

state

Set of Sets
- Disjoint: Elements must be unique

across sets
- No required order
- Each set has representative

Count of Sets
behavior

makeSet(x) — creates a new set within the
disjoint set where the only member is x.
Picks representative for set

findSet(x) — looks up the set containing
element x, returns representative of that

set

union(x, y) — looks up set containing x and
set containing y, combines two sets into
one. Picks new representative for resulting
set

TreeDisjointSet<E>

Collection<TreeSet> forest

Dictionary<NodeValues,
NodeLocations> nodelInventory

makeSet (x) -create a new
tree of size 1 and add to
our forest

findSet (x) -locates node with
X and moves up tree to find
root

union (x, y)-append tree
with yv as a child of tree
with x

TreeSet<E>

SetNode overallRoot

TreeSet (x)
add (x)

remove (x, V)
getRep () -returns data of
overallRoot

SetNode<E>

E data

Collection<SetNode>
children

SetNode (x)
addChild (x)

removeChild(x, V)

CSE 373 SP 18 - KASEY CHAMPION

Implement makeSet(x)

makeSet (0)
makeSet (1)
makeSet (2)
makeSet (3)
makeSet (4)

makeSet (5)

Worst case runtime?

0O(1)

forest

o) (9]

o) @) (@) o]

B

TreeDisjointSet<E>

Collection<TreeSet> forest

Dictionary<NodeValues,
NodeLocations> nodeInventory

makeSet (x) —create a new tree
of size 1 and add to our
forest

findSet (x) -locates node with

union(x, y)-append tree with
as a child of tree with x

X

and moves up tree to find root

Yy

CSE 373 SP 18 - KASEY CHAMPION

10

Implement union(x, y)

union (3,

S)

forest

©) ©) o) @ © ¢

TreeDisjointSet<E>

Collection<TreeSet> forest

Dictionary<NodeValues,
NodeLocations> nodeInventory

makeSet (x) —create a new tree
of size 1 and add to our
forest

findSet (x) -locates node with x
and moves up tree to find root
union (x, y)-append tree with y
as a child of tree with x

CSE 373 SP 18 - KASEY CHAMPION 11

Implement union(x, y)

union (3,

union (2,

S)

1)

forest

) (@) [

TreeDisjointSet<E>

Collection<TreeSet> forest

Dictionary<NodeValues,
NodeLocations> nodeInventory

makeSet (x) —create a new tree
of size 1 and add to our
forest

findSet (x) -locates node with x
and moves up tree to find root
union (x, y)-append tree with y
as a child of tree with x

CSE 373 SP 18 - KASEY CHAMPION 12

TreeDisjointSet<E>

Implement union(x, y)

Collection<TreeSet> forest
Dictionary<NodeValues,

fO reSt NodeLocations> nodelInventory
))
union (3, 5) 2 3 makeSet (x) —create a new tree
of size 1 and add to our
union (2, 1) forest
findSet (x) -locates node with x
union (2 5) 1 5 and moves up tree to find root
! union(x, y)-append tree with y

as a child of tree with x

CSE 373 SP 18 - KASEY CHAMPION 13

Implement union(x, y)

forest
)
union (3, 5) 0 2
union (2, 1)
union (2, 5)) ¢
5

TreeDisjointSet<E>

Collection<TreeSet> forest

Dictionary<NodeValues,
NodeLocations> nodeInventory

makeSet (x) —create a new tree
of size 1 and add to our
forest

findSet (x) -locates node with x
and moves up tree to find root
union (x, y)-append tree with y
as a child of tree with x

O 1 2 3 4 5

CSE 373 SP 18 - KASEY CHAMPION 14

Implement findSet(x)

TreeDisjointSet<E>

Collection<TreeSet> forest

Dictionary<NodeValues,
NodeLocations> nodeInventory

makeSet (x) —create a new tree
of size 1 and add to our
forest

findSet (x) -locates node with x
and moves up tree to find root
union (x, y)-append tree with y
as a child of tree with x

forest
)
findSet (0) 0 2
findSet (3) ‘ \\
findSet (5)) G
5
4) 1 2 3 4 g

~
Se—

Worst case runtime?

O(n)
Worst case runtime of union?

O(n)

CSE 373 SP 18 - KASEY CHAMPION 15

Improving union
Trees can be unbalanced

let rank(x) be a number representing the upper bound of the height of x so rank(x) >= height(x)
Keep track of rank of all trees

When unioning make the tree with larger rank the root

If it’s a tie, pick one randomly and increase rank by one

rank =0 rank = 2 rank =0 rank = 1

G @k

CSE 373 SP 18 - KASEY CHAMPION 16

Practice

Given the following disjoint-set what would be the result of the following calls on union if we add

the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for
each tree.

rank = 2

rank =0

-

2

~

rank = 2

-

8

~

10

11

rank = 1

-

7

13

~

1 5 12

union (2, 13)
union (4, 12)

union (2, 8)

17
CSE 373 SP 18 - KASEY CHAMPION

Practice

Given the following disjoint-set what would be the result of the following calls on union if we add

the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for
each tree.

rank = 2 rank =0 rank = 2 rank =1
4 A 4 <) 4 S0) 4 S)
-~ \ Y, \ ® \ Y,

union (2, 13)

18
CSE 373 SP 18 - KASEY CHAMPION

Practice

Given the following disjoint-set what would be the result of the following calls on union if we add

the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for
each tree.

rank = 2

rank = 2

-

8

~

10

11

rank = 1

-

7

13 2

~

1 5 12

union (2, 13)

union (4, 12)

19
CSE 373 SP 18 - KASEY CHAMPION

Practice

Given the following disjoint-set what would be the result of the following calls on union if we add

the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for
each tree.

rank =3 rank = 1

e (a0

union (2, 13)

union (4, 12) \\‘ ,//

union (2, 8)

20
CSE 373 SP 18 - KASEY CHAMPION

Practice

Given the following disjoint-set what would be the result of the following calls on union if we add

the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for
each tree.

rank = 3
a ; N
6 9 10) (11 7
0 2) (3 12 13 2

union (2, 13) \\i : 4//

union (4, 12)

union (2, 8)

Does this improve the worst case runtimes?

findSet is more likely to be O(log(n)) than O(n)

CSE 373 SP 18 - KASEY CHAMPION

21

Improving findSet()

Every time we call findSet() you must traverse all the levels of the tree to find

representative

Collapse tree into fewer levels by updating parent pointer of each node you visit
Whenever you call findSet() update each node you touch’s parent pointer to point directly to overallRoot

rank = 3 rank = 2

findset (5) 4 : N ; N\

findSet (4) oy ;
6) ..-&) A9 (1 5 4 6 9) (10 11 7
Does this improve the ¢
: 5 [
worst case runtimes: 4y (3 12 (13 2 ; D (D ;

findSet is more likely to

be O(1) than O(log(n)) 5
_ NS /

CSE 373 SP 18 - KASEY CHAMPION

22

Example

Using the union-by-rank and path-compression optimized implementations of disjoint-sets draw
the resulting forest caused by these calls:

makeSet (a

(a)
makeSet (b)
makeSet (c)
makeSet (d)
makeSet (e)
makeSet (f)

(h)

makeSet (h

union(c, e) \\‘

union (d, e)

union(a, c

oy

union (g,

(

(
union (b,

(

(

H Hh

union (g,

union (b, c¢

)
)
)
)
)

rank = 2

CSE 373 SP 18 - KASEY CHAMPION

23

Optimized Disjoint Set Runtime

makeSet(x)

With Optimizations 0(1)

findSet(x)

With Optimizations Best case: O(1) Worst case: O(logn)

union(x, y)

With Optimizations Best case: O(1) Worst case: O(logn)

CSE 373 SP 18 - KASEY CHAMPION 24

Worksheet question 1

1: function Kruskal(Graph G)

2 initialize each vertex to be a component

3 sort all edges by weight

4 for each edge (u, v) in sorted order do

5: if u and v are in different components then

6 add edge (u,v) to the MST

7 update u and v to be in the same component
8 end if

9: end for

10: end function

CSE373 AU 18 25

Worksheet question 1

1: function Kruskal(Graph G)

2 initialize a disjoint set; call makeSet() on each vertex
3 sort all edges by weight

4: for each edge (u, v) in sorted order do

5: if findSet(u) # findSet(v) then

6: add edge (u,v) to the MST

7 union(u, v)

8 end if

9: end for

10: end function

CSE373 AU 18 26

Implementation

Use Nodes?

In modern Java (assuming 64-bit JDK) each object takes about 32 bytes
int field takes 4 bytes

Pointer takes 8 bytes
Overhead ~ 16 bytes
Adds up to 28, but we must partition in multiples of 8 => 32 bytes

Use arrays instead!
Make index of the array be the vertex number

Either directly to store ints or representationally
We implement makeSet(x) so that we choose the representative

Make element in the array the index of the parent

CSE373 AU 18 27

Array implementation

rank =0 rank =3

10

11

12

rank =3
11 \
12 15
13 14 16 17
=/
13 14 15

CSE373 AU 18

Array implementation

rank =0 rank =3 rank =3
(o SRR e
2 6 12 15
3 4 5 7 10 13 14 16 17
_ - o =/
0 1 2 6 7 8 9 10 11 12 13 14 15 16 17 18
1 -4 1 1 6 7 7 6 -4 11 12 12 11 15 15 17

Store (rank *-1) -1

CSE373 AU 18

Example

Consider the following disjoint set. Assume that (from left) the first tree has rank 3, the second has
rank 0, the third has rank 1, and the last tree has rank 1.

Write the array representation of this disjoint set in the array below.

0 1 2 3 4 5) 6 7 8 9 10 11 12 13 14 15

CSE373 AU 18

30

Example

Consider the following disjoint set. Assume that (from left) the first tree has rank 3, the second has
rank 0, the third has rank 1, and the last tree has rank 1.

Write the array representation of this disjoint set in the array below.

1

2

3

4

5

8

9

10

11

12

13

14

15

2

7

7

7

8

3

3

-1

14

-2

14

CSE373 AU 18

31

Array method implementation

makeSet(x)
add new value to array with a rank of -1
findSet(x)

Jump into array at index/value you’re looking for, jump to parent based on element at that index,
continue until you hit negative number

union(x, y)

findSet(x) and findSet(y) to decide who has larger rank, update element to represent new parent
as appropriate

CSE373 AU 18 32

Graph Review

Graph Definitions/Vocabulary
Vertices, Edges
Directed/undirected
Weighted
Etc...

Graph Traversals
Breadth First Search

Depth First Search

Finding Shortest Path

Dijkstra’s
Topological Sort, Strongly connected components
Minimum Spanning Trees

Primm’s

Kruskal’s

Disjoint Sets
Implementing Kruskal’s

CSE373 AU 18 33

