

Lecture 20: Disjoint Sets

CSE 373: Data Structures and Algorithms

Kruskal's Algorithm Implementation

```
KruskalMST(Graph G)
  initialize each vertex to be an independent component
  sort the edges by weight
  foreach(edge (u, v) in sorted order) {
    if(u and v are in different components) {
       add (u, v) to the MST
       update u and v to be in the same component
    }
}
```

```
KruskalMST(Graph G)
foreach (V : vertices) {
    makeMST(v); +?
}
sort edges in ascending order by weight +ElogE
foreach(edge (u, v)) {
    if(findMST(v) is not in findMST(u)) {+?
        union(u, v) +?
    }
}
+E(2findMST + ElogE)
```

How many times will we call union? V - 1+E(2findMST + union) -> +Vunion + EfindMST

New ADT

Set ADT

state

Set of elements

- Elements must be unique!
- No required order

Count of Elements

behavior

create(x) - creates a new set with a single
member, x
add(x) - adds x into set if it is unique, otherwise
add is ignored
remove(x) - removes x from set
size() - returns current number of
elements in set

Disjoint-Set ADT

state

Set of Sets

- **Disjoint:** Elements must be unique across sets
- No required order
- Each set has representative

Count of Sets

behavior

makeSet(x) – creates a new set within the disjoint set where the only member is x. Picks representative for set

findSet(x) – looks up the set containing element x, returns representative of that set

union(x, y) – looks up set containing x and set containing y, combines two sets into one. Picks new representative for resulting set

new()

makeSet(a)

makeSet(b)

makeSet(c)

makeSet(d)

makeSet(e)

findSet(a)

findSet(d)

union(a, c)

new()

makeSet(a)

makeSet(b)

makeSet(c)

makeSet(d)

makeSet(e)

findSet(a)

findSet(d)

union(a, c)

union(b, d)

new()

makeSet(a)

makeSet(b)

makeSet(c)

makeSet(d)

makeSet(e)

findSet(a)

findSet(d)

union(a, c)

union(b, d)

findSet(a) == findSet(c)

findSet(a) == findSet(d)

Implementation

Disjoint-Set ADT

state

Set of Sets

- Disjoint: Elements must be unique across sets
- No required order
- Each set has representative

Count of Sets

behavior

makeSet(x) – creates a new set within the disjoint set where the only member is x. Picks representative for set

findSet(x) – looks up the set containing element x, returns representative of that set

union(x, y) – looks up set containing x and set containing y, combines two sets into one. Picks new representative for resulting set

TreeDisjointSet<E>

state

Collection<TreeSet> forest
Dictionary<NodeValues,
NodeLocations> nodeInventory

behavior

makeSet(x)-create a new
tree of size 1 and add to
our forest.

findSet(x)-locates node with x and moves up tree to find root

union(x, y)-append tree with y as a child of tree with x

TreeSet<E>

state

SetNode overallRoot

behavior

overallRoot

```
TreeSet(x)
add(x)
remove(x, y)
getRep()-returns data of
```

SetNode<E>

state

E data
 Collection<SetNode>
 children
behavior

SetNode(x)
addChild(x)
removeChild(x, y)

Implement makeSet(x)

makeSet(0)

makeSet(1)

makeSet(2)

makeSet(3)

makeSet(4)

makeSet(5)

Worst case runtime?

0(1)

TreeDisjointSet<E>

state

Collection<TreeSet> forest
Dictionary<NodeValues,
NodeLocations> nodeInventory

behavior

makeSet(x)-create a new tree
of size 1 and add to our
forest

union(3, 5)

TreeDisjointSet<E>

state

Collection<TreeSet> forest
Dictionary<NodeValues,
NodeLocations> nodeInventory

behavior

 $\begin{array}{ll} \text{makeSet} \, (\textbf{x}) \, \text{-create a new tree} \\ \text{of size 1 and add to our} \\ \text{forest} \end{array}$

union(3, 5)

union(2, 1)

0 1 2 3 4 5 -> -> -> -> ->

TreeDisjointSet<E>

state

Collection<TreeSet> forest
Dictionary<NodeValues,
NodeLocations> nodeInventory

behavior

makeSet(x)-create a new tree
of size 1 and add to our
forest

union(3, 5)

union(2, 1)

union(2, 5)

0 1 2 3 4 5 -> -> -> -> ->

TreeDisjointSet<E>

state

Collection<TreeSet> forest
Dictionary<NodeValues,
NodeLocations> nodeInventory

behavior

 $\label{eq:makeSet} \begin{array}{l} \text{makeSet}\,(\textbf{x})\,\text{-create a new tree} \\ \text{of size 1 and add to our} \\ \text{forest} \end{array}$

union(3, 5)

union(2, 1)

union(2, 5)

TreeDisjointSet<E>

state

Collection<TreeSet> forest
Dictionary<NodeValues,
NodeLocations> nodeInventory

behavior

 $\label{eq:makeSet} \begin{array}{l} \text{makeSet}\,(\textbf{x})\,\text{-create a new tree} \\ \text{of size 1 and add to our} \\ \text{forest} \end{array}$

Implement findSet(x)

findSet(0)

findSet(3)

findSet(5)

forest 4 5

Worst case runtime?

O(n)

Worst case runtime of union?

O(n)

TreeDisjointSet<E>

state

Collection<TreeSet> forest
Dictionary<NodeValues,
NodeLocations> nodeInventory

behavior

makeSet(x)-create a new tree
of size 1 and add to our
forest

Improving union

Problem: Trees can be unbalanced

Solution: Union-by-rank!

- let rank(x) be a number representing the upper bound of the height of x so rank(x) \geq height(x)
- Keep track of rank of all trees
- When unioning make the tree with larger rank the root
- If it's a tie, pick one randomly and increase rank by one

Given the following disjoint-set what would be the result of the following calls on union if we add the "union-by-rank" optimization. Draw the forest at each stage with corresponding ranks for each tree.

rank = 2

rank = 0

rank = 2

$$rank = 1$$

union(2, 13)

union(4, 12)

union(2, 8)

Given the following disjoint-set what would be the result of the following calls on union if we add the "union-by-rank" optimization. Draw the forest at each stage with corresponding ranks for each tree.

union(2, 13)

Given the following disjoint-set what would be the result of the following calls on union if we add the "union-by-rank" optimization. Draw the forest at each stage with corresponding ranks for each tree.

union(2, 13)

union(4, 12)

Given the following disjoint-set what would be the result of the following calls on union if we add the "union-by-rank" optimization. Draw the forest at each stage with corresponding ranks for each tree.

union(2, 13)

union(4, 12)

union(2, 8)

Given the following disjoint-set what would be the result of the following calls on union if we add the "union-by-rank" optimization. Draw the forest at each stage with corresponding ranks for each tree.

union(2, 13)

union(4, 12)

union(2, 8)

Does this improve the worst case runtimes?

Improving findSet()

Problem: Every time we call findSet() you must traverse all the levels of the tree to find representative

Solution: Path Compression

- Collapse tree into fewer levels by updating parent pointer of each node you visit
- Whenever you call findSet() update each node you touch's parent pointer to point directly to overallRoot

findSet(5)

findSet(4)

Does this improve the worst case runtimes?

findSet is more likely to be O(1) than O(log(n))

Using the union-by-rank and path-compression optimized implementations of disjoint-sets draw the resulting forest caused by these calls:

1. makeSet(a) 2.makeSet(b) 3. makeSet(c) 4. makeSet(d) 5. makeSet(e) 6.makeSet(f) 7. makeSet(h) 8.union(c, e) 9.union(d, e) 10.union(a, c) 11.union(q, h)12.union(b, f) 13.union(q, f)14.union(b, c)

Optimized Disjoint Set Runtime

makeSet(x)

Without Optimizations O(1)

With Optimizations O(1)

findSet(x)

Without Optimizations O(n)

With Optimizations Best case: O(1) Worst case: O(logn)

union(x, y)

Without Optimizations O(n)

With Optimizations Best case: O(1) Worst case: O(logn)

Worksheet question 1

```
1: function Kruskal(Graph G)
      initialize each vertex to be a component
2:
      sort all edges by weight
3:
      for each edge (u, v) in sorted order do
4:
          if u and v are in different components then
5:
             add edge (u,v) to the MST
6:
             update u and v to be in the same component
7:
          end if
8:
      end for
9:
10: end function
```

Worksheet question 1

```
1: function Kruskal(Graph G)
      initialize a disjoint set; call makeSet() on each vertex
2:
       sort all edges by weight
3:
      for each edge (u, v) in sorted order do
4:
          if findSet(u) \neq findSet(v) then
5:
              add edge (u,v) to the MST
6:
              union(u, v)
7:
          end if
8:
       end for
9:
10: end function
```

Implementation

Use Nodes?

In modern Java (assuming 64-bit JDK) each object takes about 32 bytes

- int field takes 4 bytes
- Pointer takes 8 bytes
- Overhead ~ 16 bytes
- Adds up to 28, but we must partition in multiples of 8 => 32 bytes

Use arrays instead!

- Make index of the array be the vertex number
 - Either directly to store ints or representationally
 - We implement makeSet(x) so that **we** choose the representative
- Make element in the array the index of the parent

Array implementation

rank = 0

rank = 3

rank = 3

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	

Array implementation

rank = 0

Store (rank * -1) - 1

Consider the following disjoint set. Assume that (from left) the first tree has rank 3, the second has rank 0, the third has rank 1, and the last tree has rank 1.

Write the array representation of this disjoint set in the array below.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Consider the following disjoint set. Assume that (from left) the first tree has rank 3, the second has rank 0, the third has rank 1, and the last tree has rank 1.

Write the array representation of this disjoint set in the array below.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
6	2	7	7	7	8	-2	-4	3	3	-1	4	4	14	-2	14

Array method implementation

makeSet(x)

add new value to array with a rank of -1

findSet(x)

Jump into array at index/value you're looking for, jump to parent based on element at that index, continue until you hit negative number

union(x, y)

findSet(x) and findSet(y) to decide who has larger rank, update element to represent new parent as appropriate

Graph Review

Graph Definitions/Vocabulary

- Vertices, Edges
- Directed/undirected
- Weighted
- Etc...

Graph Traversals

- Breadth First Search
- Depth First Search

Finding Shortest Path

- Dijkstra's

Topological Sort, Strongly connected components

Minimum Spanning Trees

- Primm's
- Kruskal's

Disjoint Sets

- Implementing Kruskal's