Disjoint Sets
Warm Up

Finding a MST using Kruskal’s algorithm
Warm Up

Finding a MST using Kruskal’s algorithm
New ADT

Set ADT

state
- Set of elements
 - Elements must be unique!
 - No required order
- Count of Elements

behavior
- `create(x)` - creates a new set with a single member, x
- `add(x)` - adds x into set if it is unique, otherwise add is ignored
- `remove(x)` - removes x from set
- `size()` - returns current number of elements in set

Disjoint-Set ADT

state
- Set of Sets
 - **Disjoint**: Elements must be unique across sets
 - No required order
 - Each set has representative
- Count of Sets

behavior
- `makeSet(x)` - creates a new set within the disjoint set where the only member is x. Picks representative for set
- `findSet(x)` - looks up the set containing element x, returns representative of that set
- `union(x, y)` - looks up set containing x and set containing y, combines two sets into one. Picks new representative for resulting set
Example

new()
makeSet(a)
makeSet(b)
makeSet(c)
makeSet(d)
makeSet(e)
findSet(a)
findSet(d)
union(a, c)
Example

new()
makeSet(a)
makeSet(b)
makeSet(c)
makeSet(d)
makeSet(e)
findSet(a)
findSet(d)
union(a, c)
union(b, d)
Example

new()
makeSet(a)
makeSet(b)
makeSet(c)
makeSet(d)
makeSet(e)
findSet(a)
findSet(d)
union(a, c)
union(b, d)
findSet(a) == findSet(c)
findSet(a) == findSet(d)
Implementation

Disjoint-Set ADT

state
- Set of Sets
 - **Disjoint**: Elements must be unique across sets
 - No required order
 - Each set has representative
- Count of Sets

behavior
- `makeSet(x)` — creates a new set within the disjoint set where the only member is `x`. Picks representative for set
- `findSet(x)` — looks up the set containing element `x`, returns representative of that set
- `union(x, y)` — looks up set containing `x` and set containing `y`, combines two sets into one. Picks new representative for resulting set

TreeDisjointSet<E>

state
- `Collection<TreeSet> forest`
- `Dictionary<NodeValues, NodeLocations> nodeInventory`

behavior
- `makeSet(x)` — create a new tree of size 1 and add to our forest
- `findSet(x)` — locates node with `x` and moves up tree to find root
- `union(x, y)` — append tree with `y` as a child of tree with `x`

TreeSet<E>

state
- `SetNode overallRoot`

behavior
- `TreeSet(x)`
- `add(x)`
- `remove(x, y)`
- `getRep()` — returns data of `overallRoot`

SetNode<E>

state
- `E data`
- `Collection<SetNode> children`

behavior
- `SetNode(x)`
- `addChild(x)`
- `removeChild(x, y)`
Implement `makeSet(x)`

```
makeSet(0)
makeSet(1)
makeSet(2)
makeSet(3)
makeSet(4)
makeSet(5)
```

Worst case runtime?

$O(1)$
Implement union(x, y)

union(3, 5)

TreeDisjointSet<E>

state
Collection<TreeSet> forest
Dictionary<NodeValues, NodeLocations> nodeInventory

behavior
makeSet(x)—create a new tree of size 1 and add to our forest
findSet(x)—locates node with x and moves up tree to find root
union(x, y)—append tree with y as a child of tree with x
Implement `union(x, y)`

- `union(3, 5)`
- `union(2, 1)`

```
forest  

0 - 1 - 2
   |    |  
   3  4
```

TreeDisjointSet<E>

- **state**
 - Collection<TreeSet> forest
 - Dictionary<NodeValues, NodeLocations> nodeInventory

- **behavior**
 - `makeSet(x)` - create a new tree of size 1 and add to our forest
 - `findSet(x)` - locates node with x and moves up tree to find root
 - `union(x, y)` - append tree with y as a child of tree with x
Implement `union(x, y)`

union(3, 5)
union(2, 1)
union(2, 5)
Implement union(x, y)

union(3, 5)
union(2, 1)
union(2, 5)

TreeDisjointSet<E>

state
Collection<TreeSet> forest
Dictionary<NodeValues, NodeLocations> nodeInventory

behavior
makeSet(x) - create a new tree of size 1 and add to our forest
findSet(x) - locates node with x and moves up tree to find root
union(x, y) - append tree with y as a child of tree with x
Implement `findSet(x)`

```
findSet(0)
findSet(3)
findSet(5)
```

- `findSet(x)` - locates node with x and moves up tree to find root

TreeDisjointSet<E>

state
- `Collection<TreeSet> forest`
- `Dictionary<NodeValues, NodeLocations> nodeInventory`

behavior
- `makeSet(x)` - create a new tree of size 1 and add to our forest
- `findSet(x)` - locates node with x and moves up tree to find root
- `union(x, y)` - append tree with y as a child of tree with x

Worst case runtime?
- \(O(n) \)

Worst case runtime of union?
- \(2n + Cu \)
Improving union

Problem: Trees can be unbalanced

Solution: Union-by-rank!
- let rank(x) be a number representing the upper bound of the height of x so rank(x) ≥ height(x)
- Keep track of rank of all trees
- When unioning make the tree with larger rank the root
- If it’s a tie, pick one randomly and increase rank by one
Practice

Given the following disjoint-set, what would be the result of the following calls on union if we add the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for each tree.

1. union(2, 13)
2. union(4, 12)
3. union(2, 8)
Practice

Given the following disjoint-set what would be the result of the following calls on union if we add the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for each tree.

union(2, 13)
union(12, 4)
union(2, 8)

Does this improve the worst case runtimes?

findSet is more likely to be $O(\log(n))$ than $O(n)$
Improving findSet()

Problem: Every time we call findSet() you must traverse all the levels of the tree to find representative

Solution: Path Compression
- Collapse tree into fewer levels by updating parent pointer of each node you visit
- Whenever you call findSet() update each node you touch’s parent pointer to point directly to overallRoot

findSet(5)

findSet(4)

Does this improve the worst case runtimes?

findSet is more likely to be O(1) than O(log(n))
Example

Using the union-by-rank and path-compression optimized implementations of disjoint-sets draw the resulting forest caused by these calls:

1. `makeSet(a)`
2. `makeSet(b)`
3. `makeSet(c)`
4. `makeSet(d)`
5. `makeSet(e)`
6. `makeSet(f)`
7. `makeSet(h)`
8. `union(c, e)`
9. `union(d, e)`
10. `union(a, c)`
11. `union(g, h)`
12. `union(b, f)`
13. `union(g, f)`
14. `union(b, c)`
Array Representation

Like heaps, pretend the tree exists, but use an Array for actual implementation