

Lecture 14: Midterm Review

Data Structures and Algorithms

Administrivia

Snow delays

- you get 3 more late days for the quarter
- you may now turn in any assignment up to 72 hours after deadline instead of 48 hours

HW 4 is due Friday

- turn in via grade scope, you have been added

We are moving to Piazza!

- https://piazza.com/class/js313vs4yym1tg
- You have all been added

Midterm Prep

- Attend section tomorrow, solutions have already been posted
- Erik filmed a review session, check it out
- I am posting another set of "Monday" slides
- HW 4 is midterm review

HW 5 goes out Friday

- Partner form due Thursday 11:59pm

A message about grades...

Midterm Logistics

50 minutes

8.5 x 11 in note page, front and back

Math identities sheet provided (see posted on website)

We will be scanning your exams to grade...

- Do not write on the back of pages
- Try not to cram answers into margins or corners

Midterm Topics

ADTs and Data Structures

- Lists, Stacks, Queues, Maps/Dictionaries
- Array vs Node implementations of each

Asymptotic Analysis

- Proving Big-O by finding a c and N_O
- Modeling code runtime with math functions, including recurrences and summations
- Finding closed form of recurrences using unrolling, tree method and master theorem
- Looking at code models and giving Big O runtimes
- Definitions of Big O, Big Omega, Big Theta

BST and AVL Trees

- Binary Search Property, Balance Property
- Insertions, Retrievals
- AVL rotations

Hashing

- Understanding hash functions
- Insertions and retrievals from a table
- Collision resolution strategies: chaining, linear probing, quadratic probing, double hashing

Heaps

- Heap properties
- Insertions, retrievals while maintaining structure with bubbling up

Homework

- ArrayDictionary
- DoubleLinkedList
- ChainedHashDictionary
- ChainedHashSet

NOT on the exam

- Memory and Locality
- B-Trees
- JUnit specifics and JUnit syntax

Asymptotic Analysis

Asymptotic Analysis

asymptotic analysis – the process of mathematically representing runtime of a algorithm in relation to the number of inputs and how that relationship changes as the number of inputs grow

Two step process

- 1. Model the process of mathematically representing how many operations a piece of code will run in relation to the number of inputs n
- 2. Analyze compare runtime/input relationship across multiple algorithms
 - 1. Graph the model of your code where x = number of inputs and y = runtime
 - 2. For which inputs will one perform better than the other?

Code Modeling

code modeling – the process of mathematically representing how many operations a piece of code will run in relation to the number of inputs n

Examples:

- Sequential search f(n) = n
- Binary search $f(n) = log_2 n$

What counts as an "operation"?

Basic operations

- Adding ints or doubles
- Variable assignment
- Variable update
- Return statement
- Accessing array index or object field

Consecutive statements

- Sum time of each statement

Assume all operations run in equivalent time

Function calls

Count runtime of function body

Conditionals

- Time of test + worst case scenario branch

Loops

Number of iterations of loop body x runtime of loop body

Code Modeling

```
public int mystery(int n) {
   int result = 0; +1
   for (int i = 0; i < n/2; i++) {
       result++; +1
   for (int i = 0; i < n/2; i+=2)
      result++; +1
   result * 10; +1
                                 f(n) = 3 + \frac{3}{4}n = C_1 + \frac{3}{4}n
   return result; +1
```

Code Modeling Example

```
public String mystery (int n) {
    ChainedHashDictionary<Integer, Character> alphabet =
                                              new ChainedHashDictionary<Integer, Character>();
    for (int i = 0; i < 26; i++)
       char c = 'a' + (char)i;
       alphabet.put(i, c);
+1 DoubleLinkedList<Character> result = new DoubleLinkedList<Character>();
   for (int i = 0; i < n; i += 2) {
       char c = alphabet.get(i); +26c \sim n/2
       result.add(c); +1
+1 String final = "";
   for (int i = 0; i < result.size(); i++) {</pre>
       final += result.remove();+1
+1 return final;
                                                         f(n) = 4 + 26 + 27\left(\frac{n}{2}\right) + \frac{n}{2} = C_1 + C_2 n
```

Function growth

Imagine you have three possible algorithms to choose between. Each has already been reduced to its mathematical model

$$f(n) = n$$

$$g(n) = 4n$$

$$h(n) = n^2$$

...but since both are linear eventually look similar at large input sizes

whereas h(n) has a distinctly different growth rate

But for very small input values h(n) actually has a slower growth rate than either f(n) or g(n)

O, Ω, Θ Definitions

O(f(n)) is the "family" or "set" of all functions that are dominated by f(n)

- $f(n) \in O(g(n))$ when $f(n) \le g(n)$
- The upper bound of an algorithm's function

$\Omega(f(n))$ is the family of all functions that dominate f(n)

- $f(n) \in \Omega(g(n))$ when f(n) >= g(n)
- The lower bound of an algorithm's function

O(f(n)) is the family of functions that are equivalent to f(n)

- We say $f(n) \in \Theta(g(n))$ when both
- $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$ are true
- A direct fit of an algorithm's function

Big-O

 $f(n) \in O(g(n))$ if there exist positive constants c, n_0 such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$

Big-Omega

 $f(n) \in \Omega(g(n))$ if there exist positive constants c, n_0 such that for all $n \ge n_0$, $f(n) \ge c \cdot g(n)$

Big-Theta

 $f(n) \in \Theta(g(n))$ if f(n) is O(g(n)) and f(n) is $\Omega(g(n))$.

Proving Domination

$$f(n) = 5(n+2)$$

$$g(n) = 2n^2$$

Find a c and n_0 that show that $f(n) \in O(g(n))$.

$$f(n) = 5(n+2) = 5n + 10$$

$$5n \le c \cdot 2n^2$$
 for $c = 3$ when $n \ge 1$

$$10 \le c \cdot 2n^2$$
 for $c = 5$ when $n \ge 1$

$$5n + 10 \le 3(2n^2) + 5(2n^2)$$
 when $n \ge 1$

$$5n + 10 \le 8(2n^2)$$
 when $n \ge 1$

$$f(n) \le c \cdot g(n)$$
 when $c = 8$ and $n_0 = 1$

Big-O

 $f(n) \in O(g(n))$ if there exist positive constants c, n_0 such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$

O, Ω, Θ Examples

For the following functions give the simplest tight O bound

$$a(n) = 10logn + 5 \qquad O(logn)$$

$$b(n) = 3^n - 4n$$
 O(3ⁿ)

$$c(n) = \frac{n}{2}$$
 O(n)

For the above functions indicate whether the following are true or false

$a(n) \in O(b(n))$	TRUE	$b(n) \in O(a(n))$	FALSE	$c(n) \in O(b(n))$	TRUE
$a(n) \in O(c(n))$	TRUE	$b(n) \in O(c(n))$	FALSE	$c(n) \in O(a(n))$	FALSE
$a(n) \in \Omega(b(n))$	FALSE	$b(n)\in\Omega(a(n))$	TRUE	$c(n)\in\Omega(b(n))$	FALSE
$a(n)\in\Omega(c(n))$	FALSE	$b(n)\in\Omega(c(n))$	TRUE	$c(n)\in\Omega(a(n))$	TRUE
$a(n) \in \Theta(b(n))$	FALSE	$b(n)\in\Theta(a(n))$	FALSE	$c(n)\in\Theta(b(n))$	FALSE
$a(n) \in \Theta(c(n))$	FALSE	$b(n)\in\Theta(c(n))$	FALSE	$c(n) \in \Theta(a(n))$	FALSE
a(n) ∈ Θ(a(n))	TRUE	$b(n) \in \Theta(b(n))$	TRUE	$c(n) \in \Theta(c(n))$	TRUE

Review: Complexity Classes

complexity class – a category of algorithm efficiency based on the algorithm's relationship to the input size N

Class	Big O	If you double N	Example algorithm
constant	O(1)	unchanged	Add to front of linked list
logarithmic	O(log ₂ n)	Increases slightly	Binary search
linear	O(n)	doubles	Sequential search
log-linear	O(nlog ₂ n)	Slightly more than doubles	Merge sort
quadratic	O(n ²)	quadruples	Nested loops traversing a 2D array
cubic	O(n ³)	Multiplies by 8	Triple nested loop
polynomial	O(n ^c)		
exponential	O(c ⁿ)	Multiplies drastically	

15

http://bigocheatsheet.com/

Modeling Complex Loops

```
for (int i = 0; i < n; i++) {
   for (int j = 0; j < i; j++) {
      System.out.println("Hello!"); +c
   }
}</pre>
```

Summation
$$1 + 2 + 3 + 4 + ... + n = \sum_{i=1}^{n} i$$

Definition: Summation

$$\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + f(a+2) + ... + f(b-2) + f(b-1) + f(b)$$

$$T(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c_{i}$$

Function Modeling: Recursion

```
public int factorial(int n) {
   if (n == 0 || n == 1) {
      return 1;
   } else {
      return n * factorial(n - 1); +T(n-1)
   }
}
```

$$T(n) = \begin{cases} C_1 & \text{when } n = 0 \text{ or } 1 \\ C_2 + T(n-1) & \text{otherwise} \end{cases}$$

Definition: Recurrence

Mathematical equivalent of an if/else statement $f(n) = \begin{cases} runtime \ of \ base \ case \ when \ conditional \\ runtime \ of \ recursive \ case \ otherwise \end{cases}$

Unrolling Method

Walk through function definition until you see a pattern

$$T(n) = \begin{cases} 4 & when \ n = 0,1 \\ 2 + T(n-1) \ otherwise \end{cases}$$

$$T(n) = 4 + \sum_{i=1}^{n-1} 2 \longrightarrow \begin{bmatrix} \text{Summation of a constant} \\ \sum_{i=1}^{n} c = cn \end{bmatrix} \longrightarrow \boxed{T(n) = 4 + 2(n-1)}$$

$$T(4) = 2 + T(4 - 1) = 2 + 2 + T(3 - 1) = 2 + 2 + 2 + T(2 - 1) = 2 + 2 + 2 + 4 = 3 * 2 + 4$$

Unrolling Example

$$T(n) = \begin{cases} 1 & when \ n = 1 \\ 2T(n-1) + 3 & else \end{cases}$$

$$2T(n-1) + 3$$

$$2(2T(n-2) + 3) + 3$$

$$2(2(2(T(n-3) + 3) + 3) + 3$$

$$= 2^{3}T(n-3) + 2^{2}3 + 2^{1}3 + 2^{0}3$$

$$= 2^{i}T(n-i) + \sum_{k=0}^{i-1} 3(2^{k})$$

base case when
$$n - i = 1 \rightarrow i = n - 1$$

= $2^{n-1}T(1) + \sum_{k=0}^{n-2} 3(2^k) = 2^{n-1} + 3(2^{n-1} - 1)$

$$T(n) = 2^{n+1} - 3$$

Tree Method Formulas

$$T(n) = \frac{1 \text{ when } n \le 1}{2T\left(\frac{n}{2}\right) + n \text{ otherwise}}$$

How much work is done by recursive levels (branch nodes)?

- 1. How many recursive calls are on the i-th level of the tree?
 - Thow many recursive cans are on the rain level of the tree

- i = 0 is overall root level

numberNodesPerLevel(i) = 2ⁱ

- 2. At each level i, how many inputs does a single node process?
 - invinputs does a single node process? | inputsPerRecursiveCall(i) = (n/ 2i)
- 3. How many recursive levels are there?
 - Based on the pattern of how we get down to base case

 $branchCount = log_2n - 1$

 $Recursive\ work = \sum_{i=0}^{branchCount} branchNu$

branchNum(i)branchWork(i) T(n > 1) =

$$T(n > 1) = \sum_{i=0}^{\log_2 n - 1} 2^i \left(\frac{n}{2^i}\right)$$

How much work is done by the base case level (leaf nodes)?

1. How much work is done by a single leaf node?

2. How many leaf nodes are there?

leafCount =
$$2^{\log_2 n} = n$$

 $NonRecursive\ work = leafWork \times leafCount = leafWork \times branchNum^{numLevels}$

$$T(n \le 1) = 1\left(2^{\log_2 n}\right) = n$$

 $total\ work = recursive\ work + nonrecursive\ work =$

$$T(n) = \sum_{i=0}^{\log_2 n - 1} 2^i \left(\frac{n}{2^i}\right) + n = n \log_2 n + n$$

Tree Method Example

$$T(n) = \frac{3 \text{ when } n = 1}{3T\left(\frac{n}{3}\right) + n \text{ otherwise}}$$

Size of input at level i? $\frac{n}{3^i}$

Number of nodes at level i? 3^i

How many levels of the tree? $log_3(n)$

Total recursive work
$$\sum_{i=0}^{\log_3 n - 1} \frac{n}{3^i} 3^i = n \log_3(n)$$

How many nodes are on the bottom level? $3^{\log_3(n)} = n$

How much work done in base case? 3n

$$T(n) = n \log_3(n) + 3n$$

Reflecting on Master Theorem

Given a recurrence of the form:

$$T(n) = \begin{cases} d \text{ when } n = 1 \\ aT\left(\frac{n}{b}\right) + n^c \text{ otherwise} \end{cases}$$
 If $\log_b a < c$ then $T(n) \in \Theta(n^c)$

If $\log_b a = c$ then $T(n) \in \Theta(n^c \log_2 n)$ If $\log_b a > c$ then $T(n) \in \Theta(n^{\log_b a})$

height $\approx \log_b a$ branchWork $\approx n^c \log_b a$ leafWork $\approx d(n^{\log_b a})$

The $\log_b a < c$ case

- Recursive case conquers work more quickly than it divides work
- Most work happens near "top" of tree
- Non recursive work in recursive case dominates growth, n^c term

The $\log_b a = c$ case

- Work is equally distributed across call stack (throughout the "tree")
- Overall work is approximately work at top level x height

The $\log_b a > c$ case

- Recursive case divides work faster than it conquers work
- Most work happens near "bottom" of tree
- Leaf work dominates branch work

Master Theorem Example

$$T(n) = \frac{3 \text{ when } n = 1}{3T\left(\frac{n}{3}\right) + n \text{ otherwise}}$$

$$a = 3$$

$$b = 3$$

$$c = 1$$

$$\log_3 3 = 1$$

$$T(n) \text{ is in } \theta(n \log n)$$

Given a recurrence of the form: $T(n) = \begin{cases} d \ when \ n = 1 \\ aT\left(\frac{n}{b}\right) + n^c \ otherwise \end{cases}$ If $\log_b a < c$ then $T(n) \in \Theta(n^c)$ If $\log_b a = c$ then $T(n) \in \Theta(n^c \log_b a)$ If $\log_b a > c$ then $T(n) \in \Theta(n^{\log_b a})$

BST & AVL Trees

Binary Search Trees

A binary search tree is a binary tree that contains comparable items such that for every node, <u>all</u> children to the left contain smaller data and <u>all children to the right contain larger data</u>.

Meet AVL Trees

AVL Trees must satisfy the following properties:

- binary trees: all nodes must have between 0 and 2 children
- binary search tree: for all nodes, all keys in the left subtree must be smaller and all keys in the right subtree must be larger than the root node
- balanced: for all nodes, there can be no more than a difference of 1 in the height of the left subtree from the right. Math.abs(height(left subtree) height(right subtree)) ≤ 1

AVL stands for Adelson-Velsky and Landis (the inventors of the data structure)

Two AVL Cases

Line Case

Solve with 1 rotation

Rotate Right

Parent's left becomes child's right Child's right becomes its parent

Rotate Left

Parent's right becomes child's left Child's left becomes its parent

Kink Case

Solve with 2 rotations

Right Kink Resolution

Rotate subtree left Rotate root tree right

Left Kink Resolution

Rotate subtree right Rotate root tree left

— Hashing

Implement First Hash Function

```
public V get(int key)
   int newKey = getKey(key);
   this.ensureIndexNotNull(key);
   return this.data[key].value;
public void put(int key, int value) {
    this.array[getKey(key)] = value;
public void remove(int key) {
   int newKey = getKey(key);
   this.entureIndexNotNull(key);
   this.data[key] = null;
public int getKey(int value) {
   return value % this.data.length;
```

SimpleHashMap < Integer >

state

Data[] size

behavior

put mod key by table size, put item at
result
get mod key by table size, get item at
result
containsKey mod key by table size,
return data[result] == null remove mod
key by table size, nullify element at
result
size return count of items in
dictionary

First Hash Function: % table size


```
put(0, "foo"); 0 % 10 = 0
put(5, "bar"); 5 % 10 = 5
put(11, "biz") 11 % 10 = 1
put(18, "bop"); 18 % 10 = 8
put(20, "poo"); 20 % 10 = 0
Collision!
```

Handling Collisions

Solution 1: Chaining

Each space holds a "bucket" that can store multiple values. Bucket is often implemented with a LinkedList

Оре	Array w/ indices as keys	
	best	O(1)
put(key,value)	average	Ο(1 + λ)
	worst	O(n)
	best	O(1)
get(key)	average	Ο(1 + λ)
	worst	O(n)
	best	O(1)
remove(key)	average	Ο(1 + λ)
	worst	O(n)

indices

Average Case:

Depends on average number of elements per chain

Load Factor λ

If n is the total number of keyvalue pairs Let c be the capacity of array Load Factor $\lambda = \frac{n}{c}$

Handling Collisions

Solution 2: Open Addressing

Resolves collisions by choosing a different location to tore a value if natural choice is already full.

Type 1: Linear Probing

If there is a collision, keep checking the next element until we find an open spot.

```
public int hashFunction(String s)
  int naturalHash = this.getHash(s);
  if(natural hash in use) {
    int i = 1;
    while (index in use) {
       try (naturalHash + i);
       i++;
    }
}
```

Type 2: Quadratic Probing

```
If we collide instead try the next i<sup>2</sup> space
```

```
public int hashFunction(String s)
  int naturalHash = this.getHash(s);
  if(natural hash in use) {
    int i = 1;
    while (index in use) {
       try (naturalHash + i * i);
       i++;
```

Linear Probing

Insert the following values into the Hash Table using a hashFunction of % table size and linear probing to resolve collisions

1, 5, 11, 7, 12, 17, 6, 25

 0	1	2	3	4	5	6	7	8	9
	11	12			25	6	17		

Quadratic Probing

Insert the following values into the Hash Table using a hashFunction of % table size and quadratic probing to resolve collisions 89, 18, 49, 58, 79

0	1	2	3	4	5	6	7	8	9
		58	7 9					18	49

$$(49 \% 10 + 0 * 0) \% 10 = 9$$

$$(49 \% 10 + 1 * 1) \% 10 = 0$$

$$(58 \% 10 + 0 * 0) \% 10 = 8$$

$$(58 \% 10 + 1 * 1) \% 10 = 9$$

$$(58 \% 10 + 2 * 2) \% 10 = 2$$

$$(79 \% 10 + 0 * 0) \% 10 = 9$$

$$(79 \% 10 + 1 * 1) \% 10 = 0$$

$$(79 \% 10 + 2 * 2) \% 10 = 3$$

Problems:

If λ≥ ½ we might never find an empty spot Infinite loop!

Can still get clusters

Handling Collisions

Solution 3: Double Hashing

If the natural hash location is taken, apply a second and separate hash function to find a new location. h'(k, i) = (h(k) + i * g(k)) % T

```
public int hashFunction(String s)
  int naturalHash = this.getHash(s);
  if(natural hash in use) {
    int i = 1;
    while (index in use) {
       try (naturalHash + i * jump_Hash(key));
       i++;
```

- Heaps

Binary Heap

8

A type of tree with new set of invariants

- 1. Binary Tree: every node has at most 2 children
- 2. Heap: every node is smaller than its child

 1

 2

 3

 4
 5

 6
 7

3. Structure: Each level is "complete" meaning it has no "gaps"

Implementing Heaps

Fill array in **level-order** from left to right

0 1 2 3 4 5 6 7 8 9 10 11 12 13
A B C D E F G H I J K L

How do we find the minimum node? peekMin() = arr[0]

How do we find the last node? lastNode() = arr[size - 1]

How do we find the next open space? openSpace() = arr[size]

How do we find a node's left child? leftChild(i) = 2i + 1

How do we find a node's right child? rightChild(i) = 2i + 2

How do we find a node's parent?

$$parent(i) = \frac{(i-1)}{2}$$

- Homework

Homework 2

ArrayDictionary<K, V>

Function	Best case	Worst case
get(K key)	O(1) Key is first item looked at	O(n) Key is not found
put(K key, V value)	O(1) Key is first item looked at	2n -> O(n) N search, N resizing
remove(K key)	O(1) Key is first item looked at	O(n) N search, C swapping
containsKey(K key)	O(1) Key is first item looked at	O(n) Key is not found
size()	O(1) Return field	O(1) Return field

DoubleLinkedList<T>

Function	Best case	Worst case
get(int index)	O(1) Index is 0 or size	n/2 -> O(n) Index is size/2
add(T item)	O(1) Item added to back	O(1) Item added to back
remove()	O(1) Item removed from back	O(1) Item removed from back
delete(int index)	O(1) Index is 0 or size	n/2 -> O(n) Index is size/2
set(int index, T item)	O(1) Index is 0 or size	n/2 -> O(n) Index is size/2
insert(int index, T item)	O(1) Index is 0 or size	n/2 -> O(n) Index is size/2

Homework 3

ChainedHashDictionary<K, V>

Function	Best case	Worst case
get(K key)	O(1) Chain size of 1	O(n) Chain size of n
put(K key, V value)	O(1) Add into empty bucket	3N -> O(n) N search in chain, N resizing of chain, N resizing of Hash
remove(K key)	O(1) Chain of size 1	O(n) Chain of size n
containsKey(K key)	O(1) Key is first item in chain / empty chain	O(n) Chain of size n, key not found
size()	O(1) Return field	O(1) Return field

ChainedHashSet<T>

Function	Best case	Worst case
add(T item)	O(1) Add into empty bucket	3N -> O(n) N search in chain, N resizing of chain, N resizing of Hash
remove(T item)	O(1) Chain of size 1	O(n) Chain of size n
contains(T item)	O(1) Item is at front of chain	O(n) Chain of size n, item not found
size()	O(1) Return field	O(1) Return field