
Lecture 13: Computer
Memory

CSE 373 Data Structures and
Algorithms

CSE 373 SP 18 - KASEY CHAMPION 1

Administrivia
Sorry no office hours this afternoon :/

Midterm review session Monday 6-8pm Sieg 134 (hopefully)

Written HW posted later today – individual assignment

CSE 373 SP 18 - KASEY CHAMPION 2

Thought experiment
public int sum1(int n, int m, int[][] table) {

int output = 0;
for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {
output += table[i][j];

}
}
return output;

}

CSE 373 SP 18 - KASEY CHAMPION 3

public int sum2(int n, int m, int[][] table) {
int output = 0;
for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {
output += table[j][i];

}
}
return output;

}

What do these two methods do?
What is the big-Θ
Θ(n*m)

Warm Up

CSE 373 SP 18 - KASEY CHAMPION 4

Incorrect Assumptions
Accessing memory is a quick and constant-time operation

Sometimes accessing memory is cheaper and easier than at other times

Sometimes accessing memory is very slow

CSE 373 SP 18 - KASEY CHAMPION 5

Lies!

Memory Architecture

CSE 373 SP 18 - KASEY CHAMPION 6

CPU Register

L1 Cache

L2 Cache

RAM

Disk

What is it? Typical Size Time

The brain of the computer! 32 bits ≈free

Extra memory to make
accessing it faster

128KB 0.5 ns

Extra memory to make
accessing it faster

2MB 7 ns

Working memory, what
your programs need

8GB 100 ns

Large, longtime storage 1 TB 8,000,000 ns

Review: Binary, Bits and Bytes
binary
A base-2 system of representing numbers using only 1s and 0s

- vs decimal, base 10, which has 9 symbols

bit
The smallest unit of computer memory represented as a single binary value either 0 or 1

CSE 373 SP 18 - KASEY CHAMPION 7

Decimal Decimal Break Down Binary Binary Break Down

0 (0 ∗ 10%) 0 (0 ∗ 2%)
1 (1 ∗ 10%) 1 (1 ∗ 2%)

10 (1 ∗ 10() + (0 ∗ 10%) 1010 (1 ∗ 2*) + (0 ∗ 2+) + (1 ∗ 2()
+ (0 ∗ 2%)

12 (1 ∗ 10() + (2 ∗ 10%) 1100 (1 ∗ 2*) + (1 ∗ 2+) + (0 ∗ 2()
+ (0 ∗ 2%)

127 1 ∗ 10+ + (1 ∗ 10()
+ (2 ∗ 10%)

011111
11

(0 ∗ 2,) + (1 ∗ 2-) + (1 ∗ 2.)
+ (1 ∗ 2/)(1 ∗ 2*) + (1 ∗ 2+)
+ (1 ∗ 2() + (1 ∗ 2%)

byte
The most commonly referred to unit of memory, a
grouping of 8 bits
Can represent 265 different numbers (28)
1 Kilobyte = 1 thousand bytes (kb)
1 Megabyte = 1 million bytes (mb)
1 Gigabyte = 1 billion bytes (gb)

Memory Architecture
Takeaways:

- the more memory a layer can store, the slower it is (generally)

- accessing the disk is very slow

Computer Design Decisions

-Physics
- Speed of light
- Physical closeness to CPU

-Cost
- “good enough” to achieve speed
- Balance between speed and space

CSE 373 SP 18 - KASEY CHAMPION 8

Locality
How does the OS minimize disk accesses?

Spatial Locality

Computers try to partition memory you are likely to use close by

- Arrays

- Fields

Temporal Locality

Computers assume the memory you have just accessed you will likely access again in the near
future

CSE 373 SP 18 - KASEY CHAMPION 9

Leveraging Spatial Locality

When looking up address in “slow layer”

- bring in more than you need based on what’s near by

- cost of bringing 1 byte vs several bytes is the same

- Data Carpool!

CSE 373 SP 18 - KASEY CHAMPION 10

Leveraging Temporal Locality
When looking up address in “slow layer”

Once we load something into RAM or cache, keep it around or a while

- But these layers are smaller
- When do we “evict” memory to make room?

CSE 373 SP 18 - KASEY CHAMPION 11

Moving Memory
Amount of memory moved from disk to RAM
- Called a “block” or “page”
- ≈4kb
- Smallest unit of data on disk

Amount of memory moved from RAM to Cache
- called a “cache line”
- ≈64 bytes

Operating System is the Memory Boss

- controls page and cache line size

- decides when to move data to cache or evict

CSE 373 SP 18 - KASEY CHAMPION 12

Warm Up
public int sum1(int n, int m, int[][] table) {

int output = 0;
for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {
output += table[i][j];

}
}
return output;

}

CSE 373 SP 18 - KASEY CHAMPION 13

public int sum2(int n, int m, int[][] table) {
int output = 0;
for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {
output += table[j][i];

}
}
return output;

}

Why does sum1 run so much faster than sum2?
sum1 takes advantage of spatial and temporal locality

0 1 2 3 4

0 1 2

‘a’ ‘b’ ‘c’

0 1 2

‘d’ ‘e’ ‘f’

0 1 2

‘g’ ‘h’ ‘i’

0 1 2

‘j’ ‘k’ ‘l’

0 1 2

‘m’ ‘n’ ‘o’

Java and Memory
What happens when you use the “new”
keyword in Java?

- Your program asks the Java Virtual
Machine for more memory from the
“heap”
- Pile of recently used memory

- If necessary the JVM asks Operating
System for more memory
- Hardware can only allocate in units of page
- If you want 100 bytes you get 4kb
- Each page is contiguous

CSE 373 SP 18 - KASEY CHAMPION 14

What happens when you create a new array?
- Program asks JVM for one long, contiguous chunk of memory

What happens when you create a new object?
- Program asks the JVM for any random place in memory

What happens when you read an array index?
- Program asks JVM for the address, JVM hands off to OS
- OS checks the L1 caches, the L2 caches then RAM then disk

to find it
- If data is found, OS loads it into caches to speed up future

lookups

What happens when we open and read data from a
file?

- Files are always stored on disk, must make a disk access

Array v Linked List
Is iterating over an ArrayList faster than iterating over a LinkedList?

Answer:

LinkedList nodes can be stored in memory, which means the don’t have spatial locality. The
ArrayList is more likely to be stored in contiguous regions of memory, so it should be quicker to
access based on how the OS will load the data into our different memory layers.

CSE 373 SP 18 - KASEY CHAMPION 15

Thought Experiment

Suppose we have an AVL tree of height 50. What is the best case scenario for number of disk
accesses? What is the worst case?

CSE 373 SP 18 - KASEY CHAMPION 16

RAM Disk

Maximizing Disk Access Effort
Instead of each node having 2 children, let it have M children.
- Each node contains a sorted array of children

Pick a size M so that fills an entire page of disk data

Assuming the M-ary search tree is balanced, what is its height?

What is the worst case runtime of get() for this tree?

CSE 373 SP 18 - KASEY CHAMPION 17

logm(n)

log2(m) to pick a child
logm(n) * log2(m) to find node

Maximizing Disk Access Effort
If each child is at a different location in disk memory – expensive!

What if we construct a tree that stores keys together in branch nodes, all the values in leaf nodes

CSE 373 SP 18 - KASEY CHAMPION 18

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

<- internal nodes

leaf nodes ->

K K K K K

K V

K V

K V

K V

B Trees
Has 3 invariants that define it

1. B-trees must have two different types of nodes: internal nodes and leaf nodes

2. B-trees must have an organized set of keys and pointers at each internal node

3. B-trees must start with a leaf node, then as more nodes are added they must stay at least half
full

CSE 373 SP 18 - KASEY CHAMPION 19

Node Invariant
Internal nodes contain M pointers to children and M-1 sorted keys

A leaf node contains L key-value pairs, sorted by key

CSE 373 SP 18 - KASEY CHAMPION 20

K K K K K

K V

K V

K V

K V

M = 6

L = 3

Order Invariant

For any given key k, all subtrees to the left may only contain keys x that satisfy x < k. All subtrees
to the right may only contain keys x that satisfy k >= x

CSE 373 SP 18 - KASEY CHAMPION 21

3 7 12 21

X < 3 3 <= X < 7 7 <= X < 12 12 <= X < 21 21 <= x

Structure Invariant

If n <= L, the root node is a leaf

CSE 373 SP 18 - KASEY CHAMPION 22

K V

K V

K V

K V

When n > L the root node must be an internal node
containing 2 to M children

All other internal nodes must have M/2 to M
children

All leaf nodes must have L/2 to L children

All nodes must be at least half-full The root is the
only exception, which can have as few as 2 children
- Helps maintain balance

- Requiring more than 2 children prevents degenerate Linked
List trees

B-Trees

Has 3 invariants that define it

1. B-trees must have two different types of nodes: internal nodes and leaf nodes
- An internal node contains M pointers to children and M – 1 sorted keys.

- M must be greater than 2
- Leaf Node contains L key-value pairs, sorted by key.

2. B-trees order invariant
- For any given key k, all subtrees to the left may only contain keys that satisfy x < k

- All subtrees to the right may only contain keys x that satisfy k >= x

3. B-trees structure invariant
- If n<= L, the root is a leaf
- If n >= L, root node must be an internal node containing 2 to M children

- All nodes must be at least half-full

CSE 373 SP 18 - KASEY CHAMPION 23

get() in B Trees
get(6)

get(39)

CSE 373 SP 18 - KASEY CHAMPION 24

6 4

8 5

9 6

10 7

12 8

14 9

16 10

17 11

20 12

22 13

24 14

34 18

38 19

39 20

41 21

12 44

27 15

28 16

32 17

6 20 27 34 50

1 1

2 2

3 3

Worst case run time = logm(n)log2(m)
Disk accesses = logm(n) = height of tree

put() in B Trees
Suppose we have an empty B-tree where M = 3 and L = 3. Try inserting 3, 18, 14, 30, 32, 36

CSE 373 SP 18 - KASEY CHAMPION 25

3 1

18

14

2

3

3 1

14

18

3

2
18

3 1

14 3

18 2

30 4

32 5

32

32 5

36 6

Warm Up
What operations would occur in what order if a call of get(24) was called on this b-tree?

What is the M for this tree? What is the L?

If Binary Search is used to find which child to follow from an internal node, what is the runtime
for this get operation?

CSE 373 SP 18 - KASEY CHAMPION 26

6 4

8 5

9 6

10 7

12 8

14 9

16 10

17 11

20 12

22 13

24 14

34 18

38 19

39 20

41 21

12

27 15

28 16

32 17

6 20 27 34

1 1

2 2

3 3

Review: B-Trees

Has 3 invariants that define it

1. B-trees must have two different types of nodes: internal nodes and leaf nodes
- An internal node contains M pointers to children and M – 1 sorted keys.

- M must be greater than 2
- Leaf Node contains L key-value pairs, sorted by key.

2. B-trees order invariant
- For any given key k, all subtrees to the left may only contain keys that satisfy x < k

- All subtrees to the right may only contain keys x that satisfy k >= x

3. B-trees structure invariant
- If n<= L, the root is a leaf
- If n >= L, root node must be an internal node containing 2 to M children

- All nodes must be at least half-full

CSE 373 SP 18 - KASEY CHAMPION 27

Put() for B-Trees

Build a new b-tree where M = 3 and L = 3.

Insert (3,1), (18,2), (14,3), (30,4) where (k,v)

When n <= L b-tree root is a leaf node

No space for (30,4) ->split the node

Create two new leafs that each hold ½ the values and create a new internal node

CSE 373 SP 18 - KASEY CHAMPION 28

3 1

18 2

14 3wrong ->

18

3 1

14 3

18 2

30 4

<- use smallest value in larger subset as sign post
2. B-trees order invariant

For any given key k, all subtrees to the left
may only contain keys that satisfy x < k
All subtrees to the right may only contain
keys x that satisfy k >= x

You try!
Try inserting (32, 5) and (36, 6) into the following tree

CSE 373 SP 18 - KASEY CHAMPION 29

18

3 1

14 3

18 2

30 4

32 5

32 5

36 6

32

Splitting internal nodes
Try inserting (15, 7) and (16, 8) into our existing tree

CSE 373 SP 18 - KASEY CHAMPION 30

18

3 1

14 3

18 2

30 4

32 5

32 5

36 6

32

15 7

15 7

16 8

32

3 1

14 3

18 2

30 4

32 5

36 6

15

15 7

16 8

Make a new internal node!

Make a new internal node!
18

B-tree Run Time
Time to find correct leaf

Time to insert into leaf

Time to split leaf

Time to split leaf’s parent internal node

Number of internal nodes we might have to split

All up worst case runtime:

CSE 373 SP 18 - KASEY CHAMPION 31

Height = logm(n)log2(m) = tree traversal time

Θ(L)

Θ(L)

Θ(M)

Θ(logm(n))

Θ(L + Mlogm(n))

