
Lecture 7: Solving
Recurrences

CSE 373: Data Structures and
Algorithms

CSE 373 19 WI - KASEY CHAMPION 1

Warm Up – Writing Recurrences

2CSE 373 19 WI - KASEY CHAMPION

Administriva
HW 2 Part 1 due Friday

- git runners will get overloaded on Friday, plan accordingly

No Kasey office hours Friday

3CSE 373 19 WI - KASEY CHAMPION

Solving Recurrences

4CSE 373 19 WI - KASEY CHAMPION

Review: Modeling Recursion

public int factorial(int n) {

if (n == 0 || n == 1) {

return 1;

} else {
return n * factorial(n-1);

}

}

5

Write a mathematical model of the following code

+3

+1

+2

! " = $ 4 &ℎ(" " = 0,1
2 + ! " − 1 /0ℎ(1&23(

What is the Big O?

CSE 373 19 WI - KASEY CHAMPION

Solving Recurrences
How do we go from code model to Big O?

1. Explore the recursive pattern by tracing through the a few levels of recursion

2. Write a new model of the runtime or “work done” for the pattern in terms of the level of
recursion “i”

3. Use algebra (and likely a summation) to simplify the T recursive call out of your new model

4. Use algebra to simplify down to the “closed form” so you can easily identify the Big O

6CSE 373 19 WI - KASEY CHAMPION

Unrolling Method

7

! " = $ 4 &ℎ(" " = 0,1
2 + ! " − 1 /0ℎ(1&23(

! " = 2 + 2 + !(" − 1 − 1)! " = $ 4&ℎ(" " = 0,1
2+! "−1 /0ℎ(1&23(

! " = 2 + 2 + !(" − 2) ! " = 2 + 2 + 2 + !(" − 2 − 1)

! " = 2 + 2 + 2 + !(" − 3)

! " = $ 4&ℎ(" " = 0,1
1+! "−1 /0ℎ(1&23(

! " = $ 4&ℎ(" " = 0,1
1+! "−1 /0ℎ(1&23(! " = 2 + 2 + 2 + 2 + !(" − 3 − 1)

! 4 = 2 + ! 4 − 1 = 2 + 2 + ! 3 − 1 = 2 + 2 + 2 + ! 2 − 1 = 2 + 2 + 2 + 4 = 3 ∗ 2 + 4

! " = 2 + 2 + 2 + 2 +⋯+ ! 1 = 2 + 2 + 2 + 2 + … + 4

n-1 recursive cases 1 base case

! " = 4 + :
;<=

> ?=
2

Summation of a constant

:
;<=

>
@ = @" ! " = 4 + 2(" − 1)

Walk through function definition until you see a pattern

2 + !(" − 1)

! " = i = 1
i = 2

i = 3

i = ? T(n-i) = T(1) when i= n-1

CSE 373 19 WI - KASEY CHAMPION

Unrolling Method

8

! " =
1 %ℎ'" " = 0
2! " − 1 + 1 ,-ℎ'.%/0'

= 2! " − 1 + 1

= 2 2! " − 2 + 1 + 1

= 21 2! " − 3 + 1 + 2 + 1

= 23 2! " − 4 + 1 + 21 + 25 + 26

= 27! " − / + 2785 + 2781 + 2783 + ⋯+ 26

Finite Geometric Series

:
7;6

<85
=7 = =< − 1

= − 1 = 2< + 2< − 1
2 − 1 = 2< + 2< − 1 = 2<>5 − 1

Walk through function definition until you see a pattern

= 2< ! " − " +:
?;6

<85
2? = 2< 1 +:

?;6

<85
2?

5 Minutes

= 21! " − 2 + 2 + 1

= 23! " − 3 + 21 + 25 + 26

i = 2
i = 3
i = 4

i = n-i

i = 1

= 2@! " − 4 + 23 + 21 + 25 + 26

= 27! " − / +:
?;6

785
2?

CSE 373 19 WI - KASEY CHAMPION

Solving Recurrences
How do we go from code model to Big O?

1. Explore the recursive pattern

2. Write a new model in terms of “i”

3. Use algebra simplify the T away

4. Use algebra to find the “closed form”

9

Using unrolling method
1. Plug definition into itself to write out first few

levels of recursion
2. Simplify away parenthesis but leave separate

terms to help identify pattern in terms of i
3. Plug in a value of i to solve for base case, write

summation representing recursive work
4. Using summation identities as appropriate

reduced to “closed form”

CSE 373 19 WI - KASEY CHAMPION

Tree Method

CSE 373 SP 18 - KASEY CHAMPION 10

! "! "
2 + ! "

2 + "

! "
2 ! "

2

"
1. Draw an overall root representing the start of your family of recursive calls

2. How much work is done by the top recursive level?

3. How much of that work is delegated to downstream recursive calls?

4. How much work is done by each of those child recursive calls?

5. How much of that work is delegated to downstream recursive calls?

6. …

7. What does the last row of the tree look like?

8. Sum up all the work!

! "
4 + ! "

4 + "2 ! "
4 + ! "

4 + "2
"
2

"
2

! "
4 ! "

4 ! "
4 ! "

4
"
4

"
4

"
4

"
4

… … … … … … … …

Draw out call stack, how much work does each call do?

! " = '
1)ℎ+" " ≤ 1

2! "
2 + " -.ℎ+/)01+

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Tree Method

11

n

n
2

n
2

n
4

n
4

n
4

n
4

n
8

n
8

n
8

n
8

n
8

n
8

n
8

n
8

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

… … … … … … … …… … …… … … … …

How many pieces of
work at each level?

How much work
across each level?

1 n

2

4

8

n

n

n

n

n

& ' =
1)ℎ+' ' ≤ 1
2& '

2 + ' ./ℎ+0)12+
How much work

done by each piece?

n

3
4

3
44

3
45

6

Tree Method Formulas
How much work is done by recursive levels (branch nodes)?
1. How many recursive calls are on the i-th level of the tree?

- i = 0 is overall root level

2. At each level i, how many inputs does a single node process?
3. How many recursive levels are there?

- Based on the pattern of how we get down to base case

How much work is done by the base case level (leaf nodes)?
1. How much work is done by a single leaf node?
2. How many leaf nodes are there?

CSE 373 SP 18 - KASEY CHAMPION 12

!"#$%&'(")*%+ = -
./0

1234567894:

;%<=#ℎ?$@ ' ;%<=#ℎA*%+(')

?*=!"#$%&'(")*%+ = D"<EA*%+×D"<EG*$=H = D"<EA*%+×;%<=#ℎ?$@49IJKLKMN

O = =
1)ℎ"= = ≤ 1

2O
=
2
+ = *Hℎ"%)'&"

numberNodesPerLevel(i) = 2i

inputsPerRecursiveCall(i) = (n/ 2i)
branchCount = log2n - 1

O(= > 1) = -
./0

UVWX 4YZ

2.
=
2.

leafWork = 1
leafCount = 2log2n = n

O = ≤ 1 = 1 2M8[\4 = =

O = = -
./0

UVWX 4YZ

2.
=
2.

+ = = = log\ = + =H*H<D)*%+ = %"#$%&'(")*%+ + =*=%"#$%&'(")*%+ =

Tree Method Practice

13

! " =
4 %ℎ'" " ≤ 1
3! "

4 + ,"- ./ℎ'0%12'

,n-

, n
4

-

… …

, n
4

-
, n
4

-

, n
16

-
, n
16

-
, n
16

-
, n
16

-
, n
16

-
, n
16

-
, n
16

-
, n
16

-
, n
16

-

… … …… … …… … …… … …… … …… … …… … …… … ……

4 4

Answer the following
questions:
1. How many nodes on

each branch level?
2. How much work for

each branch node?
3. How much work per

branch level?
4. How many branch

levels?
5. How much work for

each leaf node?
6. How many leaf

nodes?

EXAMPLE PROVIDED BY CS 161 – JESSICA SU
HTTPS://WEB.STANFORD.EDU/CLASS/ARCHIVE/CS/CS161/CS161.1168/LECTURE3.PDF

! "
4 ! "

4 ! "
4

! "
4 + ! "

4 + ! "
4 + ,"-

https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture3.pdf

Tree Method Practice

CSE 373 SP 18 - KASEY CHAMPION 14

Level (i) Number of
Nodes

Work per
Node

Work per
Level

0 1 !"2 !"2

1 3 !
"

4

% 3
16
!"%

2 9 !
"
16

% 9
256

!"%

base 3+,-./ 4 12+,-./

1. How many nodes on each branch level?

2. How much work for each branch node?

3. How much work per branch level?

4. How many branch levels?

5. How much work for each leaf node?

6. How many leaf nodes?

30

!
"

40
%

log. " − 1

4

5 " =
4 7ℎ9" " ≤ 1

35
"

4
+ !"% <=ℎ9>7?@9

Combining it all together…

30!
"

40
%
=

3

16

0

!"%

5 " = A
0BC

+,-D / EF
3

16

0

!"% + 4"+,-.G

3+,-D / power of a log

H+,-I J = K+,-I L
"+,-D G

5 Minutes

Tree Method Practice

CSE 373 SP 18 - KASEY CHAMPION 15

! " = $
%&'

()*+ , -. 3
16

%
2"3 + 4"()*67

! " = 2"3 1
1 − 3

16
+ 4"()*67

! " = 2"3
3
16

()*+ ,
− 1

3
16 − 1

+ 4"()*67

! " ∈ :("3)

$
%&=

>
2?(@) = 2$

%&=

>
?(@)

factoring out a constant

! " = 2"3 $
%&'

()*+ , -. 3
16

%
+ 4"()*67

$
%&'

,-.
A% = A, − 1

A − 1

finite geometric series

$
%&'

B
A% = 1

1 − A

infinite geometric series

when -1 < x < 1

If we’re trying to prove upper bound…

! " = 2"3$
%&'

B 3
16

%
+ 4"()*67

Closed form:

Solving Recurrences
How do we go from code model to Big O?

1. Explore the recursive pattern

2. Write a new model in terms of “i”
3. Use algebra simplify the T away

4. Use algebra to find the “closed form”

CSE 373 SP 18 - KASEY CHAMPION 16

Using unrolling method
1. Plug definition into itself to write out first few

levels of recursion
2. Simplify away parenthesis but leave separate terms

to help identify pattern in terms of i
3. Plug in a value of i to solve for base case, write

summation representing recursive work
4. Using summation identities as appropriate reduced

to “closed form”

Using tree method
1. Plug definition into itself to draw out first few levels of

tree
2. Answer questions about nature of tree to identify work

done by recursive levels and base case in terms of i
3. Combine answers to questions to complete model in

terms of i
4. Using summation identities as appropriate reduced to

“closed form”

Is there an easier way?
What if you do want an exact closed form?

Sorry, no

If we want to find a big Θ

Sometimes, yes!

CSE 373 SP 18 - KASEY CHAMPION 17

Master Theorem

CSE 373 SP 18 - KASEY CHAMPION 18

! " =
$ %ℎ'" " = 1
)! "

* + ", -.ℎ'/%01'

Given a recurrence of the following form:

Then thanks to magical math brilliance we can know the following:

! " ∈ Θ ",log7) < 9

log7) = 9 ! " ∈ Θ ", log: "

log7) > 9 ! " ∈ Θ "<=>? @

If

If

If

then

then

then

Apply Master Theorem

CSE 373 SP 18 - KASEY CHAMPION 19

! " =
1 %ℎ'" " ≤ 1
2! "

2 + " +,ℎ'-%./'

! " =
0 %ℎ'" " = 1

1! "
2 + "3 +,ℎ'-%./'

log7 1 = 8 ! " ∈ Θ "3 log; "
log7 1 > 8 ! " ∈ Θ "=>?@ A

If

If

! " ∈ Θ "3log7 1 < 8If then

then

then

Given a recurrence of the form:

a = 2
b = 2
c = 1
d = 1

log7 1 = 8 ⇒ log; 2 = 1

! " ∈ Θ "3 log; " ⇒ Θ "D log; "

Reflecting on Master Theorem
The case
- Recursive case conquers work more quickly than it divides work
- Most work happens near “top” of tree
- Non recursive work in recursive case dominates growth, nc term

The case
- Work is equally distributed across call stack (throughout the “tree”)
- Overall work is approximately work at top level x height

The case
- Recursive case divides work faster than it conquers work
- Most work happens near “bottom” of tree
- Leaf work dominates branch work

CSE 373 SP 18 - KASEY CHAMPION 20

! " =
$ %ℎ'" " = 1

)! "
* + ", -.ℎ'/%01'

log5) = 6 ! " ∈ Θ ", log9 "
log5) > 6 ! " ∈ Θ ";<=> ?

If

If

! " ∈ Θ ",log5) < 6If then

then

then

Given a recurrence of the form: log5) < 6

log5) = 6

log5) > 6

A')BC-/D ≈ $ ";<=> ?

ℎ'0Fℎ. ≈ log5)
*/)"6ℎC-/D ≈ ",log5)

