
Lecture 6: More Definitions,
Modeling Complex Algorithms

CSE 373: Data Structures and
Algorithms

CSE 373 19 WI - KASEY CHAMPION 1

Administrivia
Homework 1 due tonight

Homework 2 goes live tonight

Email list active!
- turn off discussion board notifications
- please do use discussion board

IDE Setup Office Hours today CSE Floor 2 breakout 3:30-7:30

Please fill out student background survey

CSE 373 SP WI - KASEY CHAMPION 2

Edge Cases

True or False: 10#$ + 15# is '(#))
It’s true – it fits the definition

CSE 332 SU 18 - ROBBIE WEBER 3

10#2 ≤ -�#3 /ℎ1# - = 10 345 # ≥ 1
15# ≤ -�#3 /ℎ1# - = 15 345 # ≥ 1
10#2 + 15# ≤ 10#3 + 15#3 ≤ 25#3 345 # ≥ 1
10#$ + 15# is '(#)) because 10#$ + 15# ≤ 25#3 345 # ≥ 1

Big-O is just an upper bound. It doesn’t have to be a good upper bound

If we want the best upper bound, we’ll ask you for a tight big-O bound.
' #$ is the tight bound for this example.
It is (almost always) technically correct to say your code runs in time '(#!).
DO NOT TRY TO PULL THIS TRICK ON AN EXAM. Or in an interview.

Why Are We Doing This?
You already intuitively understand what big-O means.

Who needs a formal definition anyway?
- We will.

Your intuitive definition and my intuitive definition might be different.

We’re going to be making more subtle big-O statements in this class.
- We need a mathematical definition to be sure we’re on the same page.

Once we have a mathematical definition, we can go back to intuitive thinking.
- But when a weird edge case, or subtle statement appears, we can figure out what’s correct.

CSE 332 SU 18 - ROBBIE WEBER 4

Function comparison: exercise
f(n) = n ≤ g(n) = 5n + 3?

f(n) = 5n + 3 ≤ g(n) = n?
f(n) = 5n + 3 ≤ g(n) = 1?

f(n) = 5n + 3 ≤ g(n) = n2?

f(n) = n2 + 3n + 2 ≤ g(n) = n3?

f(n) = n3 ≤ g(n) = n2 + 3n + 2 ?

CSE 373 WI 18 – MICHAEL LEE 5

True – all linear functions are treated as equivalent

True
False
True – quadratic will always dominate linear

True

False

3 Minutes

O, Omega, Theta [oh my?]
Big-O is an upper bound
- My code takes at most this long to run

Big-Omega is a lower bound

Big Theta is “equal to”

CSE 332 SU 18 - ROBBIE WEBER 6

!(#) is Ω(& #) if there exist positive
constants ', #) such that for all # ≥ #),

! # ≥ ' ⋅ & #

Big-Omega

!(#) is Θ(& #) if
! # is -(& #) and ! # is Ω(& #).

Big-Theta

Ω ! # ≤ ! # == 0 ! # ≤ -(! #)

f(n)

O(1)

O(log n)

O(n)

O(n2)

O(n3)

Is dominated by
f(n) ∈ O(g(n))

Dominates
f(n) ∈ Ω(g(n))

Viewing O as a class

Sometimes you’ll see big-O defined as a family or set of functions.

CSE 332 SU 18 - ROBBIE WEBER 7

O(# $) is the set of all functions & $ such that
there exist positive constants ', $) such that for
all $ ≥ $), & $ ≤ ' ⋅ # $

Big-O (alternative definition)

For that reason, some people write & $ ∈ . # $ where we wrote “& $ is .(# $)”.
Other people write “& $ = . # $ ” to mean the same thing.

The set of all functions that run in linear time (i.e. .($)) is a “complexity class.”

We never write .(5$) instead of .($) – they’re the same thing!

It’s like writing
1
2 instead of 3. It just looks weird.

Examples
4n2 ∈ Ω(1)

true
4n2 ∈ Ω(n)

true
4n2 ∈ Ω(n2)

true
4n2 ∈ Ω(n3)

false
4n2 ∈ Ω(n4)

false

8

4n2 ∈ O(1)

false
4n2 ∈ O(n)

false
4n2 ∈ O(n2)

true
4n2 ∈ O(n3)

true
4n2 ∈ O(n4)

true

"($) ∈ &(' $) if there exist positive
constants (, $* such that for all $ ≥ $*,

" $ ≤ (⋅ ' $

Big-O

"($) ∈ Ω(' $) if there exist positive
constants (, $* such that for all $ ≥ $*,

" $ ≥ (⋅ ' $

Big-Omega

"($) ∈ Θ(' $) if
" $ is &(' $) and " $ is Ω(' $).

Big-Theta

CSE 373 19 WI - KASEY CHAMPION

Practice
5n + 3 ∈ O(n)

n ∈ O(5n + 3)

5n + 3 = O(n)

O(5n + 3) = O(n)

O(n2) = O(n)

n2 ∈ O(1)

n2 ∈ O(n)

n2 ∈ O(n2)

n2 ∈ O(n3)

n2 ∈ O(n100)

9

True

True

True

True

False

False

False

True

True

True

3 Minutes

"($) ∈ &(' $) if there exist positive
constants (, $* such that for all $ ≥ $*,

" $ ≤ (⋅ ' $

Big-O

"($) ∈ Ω(' $) if there exist positive
constants (, $* such that for all $ ≥ $*,

" $ ≥ (⋅ ' $

Big-Omega

"($) ∈ Θ(' $) if
" $ is &(' $) and " $ is Ω(' $).

Big-Theta

CSE 373 19 WI - KASEY CHAMPION

Modeling Complex Code

11CSE 373 19 WI - KASEY CHAMPION

Modeling Complex Loops

for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {

System.out.println(“Hello!”);
}

}

12

+1 nn f(n) = n2

Keep an eye on loop bounds!

2 Minutes

Write a mathematical model of the following code

CSE 373 19 WI - KASEY CHAMPION

Modeling Complex Loops
for (int i = 0; i < n; i++) {

for (int j = 0; j < i; j++) {
System.out.println(“Hello!”);

}
}

13

+1 0 + 1 + 2 + 3 +…+ i-1 n

Summations!
1 + 2 + 3 + 4 +… + n = !

"#$

%
& = f(a) + f(a + 1) + f(a + 2) + … + f(b-2) + f(b-1) + f(b)

Definition: Summation

!
"#'

(
)(&)

T(n) = !
"#,

%-$
!
.#,

"-$
1

T(n) = n (0 + 1 + 2 + 3 +…+ i-1)

How do we
model this part?

What is the Big O?

CSE 373 19 WI - KASEY CHAMPION

Summation Identities
https://courses.cs.washington.edu/courses/cse373/19wi/resources/math/

Provided on the exams!

14

And more!

CSE 373 19 WI - KASEY CHAMPION

https://courses.cs.washington.edu/courses/cse373/19wi/resources/math/

Simplifying Summations

CSE 373 WI 18 – MICHAEL LEE 15

! " = $
%&'

()*
$
+&'

%)*
1

= $
%&'

()*
1�-

= 1$
%&'

()*
-

= . " " − 1
2

Summation of a constant

$
%&'

()*
. = ."

Factoring out a constant

$
%&1

2
.3 - = .$

%&1

2
3(-)

Gauss’s Identity

$
%&'

()*
- = " " − 1

2
=

.
2 "

6 − .
2 " O(n2)=

for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {

System.out.println(“Hello!”);
}

}

Modeling Recursion

public int factorial(int n) {

if (n == 0 || n == 1) {

return 1;

} else {
return n * factorial(n-1);

}

}

16

Write a mathematical model of the following code

+3

+1

+1 +??????

1 Minute

! " = $ 4 &ℎ(" " = 0,1
! " − 1 -.ℎ(/&01(

recurrence!

CSE 373 19 WI - KASEY CHAMPION

Writing a Recurrence

If the function runs recursively, our formula for the running time should
probably be recursive as well.
- Such a formula is called a recurrence.

! " = $! " − 1 + 2 if " > 1
1 otherwise

What does this say?
- The input to ! is the size of the input to the Length.
- If the input to T() is large, the running time depends on the recusive call.
- If not we can just use the base case.

CSE 332 - SU 18 ROBBIE WEBER 17

Another example
public int Mystery(int n){

if(n == 1) {
return 1;

} else {
for(int i = 0; i < n; i++){

for(int j = 0; j < n; j++){
System.out.println(“hi!”);

}
}
return Mystery(n/2)

}
}

CSE 332 - SU 18 ROBBIE WEBER 18

! " = $ 1 &ℎ(" " = 1
! "/2 + ", if n > 1

+1

+1

+1 1 * n 1 * n * n

