
Lecture 3: Maps and
Iterators

CSE 373: Data Structures and
Algorithms

CSE 373 19 WI - KASEY CHAMPION 1

Warm Up – Design Decisions

2

Socrative:
www.socrative.com
Room Name: CSE373
Please enter your name as: Last, First

Discuss with your neighbors: Which implementation of which ADT would you choose if asked to
implement each of the following situations? For each consider the most important functions to
optimize.

Situation #1: Syntax checker to determined correct alignment of Java code curly braces

LinkedStack – optimize for “sandwich” pattern of closing most recent sets first and possible
reordering during development

Situation #2: Scheduling print jobs sent to a single printer by multiple users

ArrayQueue – optimize for maintaining order of requests received, possible cancellations and
adhering to maximum queue size

Situation #3: The collection of comments left by users on a single Instagram post

ArrayList – optimize for addition in order, the ability to

remove regardless of position and update number of likes

CSE 373 19 WI - KASEY CHAMPION

5 Minutes

http://www.socrative.com/

Course Announcements

3

Website is live

Discussion Board posted

HW 1 posted, due Friday Jan 18

Office Hours start next week

Sorry, still no add code

CSE 373 19 WI - KASEY CHAMPION

Review: Maps
map: Holds a set of unique keys and a collection of
values, where each key is associated with one value.
- a.k.a. "dictionary", "associative array", "hash"

CSE 143 SP 17 – ZORA FUNG 4

key value

“you" 22

key value

“in" 37

key value

“the" 56

key value

“at" 43

map.get("the") 56

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior
Set of items & keys
Count of items

supported operations:
- put(key, value): Adds a given item into

collection with associated key, if the
map previously had a mapping for the
given key, old value is replaced

- get(key): Retrieves the value mapped to
the key

- containsKey(key): returns true if key is
already associated with value in map,
false otherwise

- remove(key): Removes the given key
and its mapped value

Implementing a Dictionary with an Array

5

ArrayDictionary<K, V>

put create new pair, add to
next available spot, grow
array if necessary
get scan all pairs looking
for given key, return
associated item if found
containsKey scan all pairs,
return if key is found
remove scan all pairs,
replace pair to be removed
with last pair in collection
size return count of items in
dictionary

state

behavior

Pair<K, V>[] data
size

Big O Analysis
put()

get()

containsKey()

remove()

size() O(1) constant

O(n) linear
O(n) linear

O(n) linear

O(n) linear

0 1 2 3

put(‘a’, 1)
put(‘b’, 2)
put(‘c’, 3)
put(‘d’, 4)
remove(‘b’)
put(‘a’, 97)

(‘a’, 1) (‘b’, 2)

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

(‘c’, 3)97) (‘d’, 4)

CSE 373 19 WI - KASEY CHAMPION

2 Minutes

Implementing a Dictionary with Nodes

6

LinkedDictionary<K, V>

put if key is unused, create new with
pair, add to front of list, else
replace with new value
get scan all pairs looking for given
key, return associated item if found
containsKey scan all pairs, return if
key is found
remove scan all pairs, skip pair to be
removed
size return count of items in
dictionary

state

behavior

front
size

Big O Analysis
put()

get()

containsKey()

remove()

size() O(1) constant

O(n) linear
O(n) linear

O(n) linear

O(n) linear

put(‘a’, 1)
put(‘b’, 2)
put(‘c’, 3)
put(‘d’, 4)
remove(‘b’)
put(‘a’, 97)

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

front

‘b’ 2‘c’ 3 ‘a’ 1‘d’ 4 97

CSE 373 19 WI - KASEY CHAMPION

2 Minutes

Traversing Data
Array
for (int i = 0; i < arr.length; i++) {

System.out.println(arr[i]);

}

List
for (int i = 0; i < myList.size(); i++) {

System.out.println(myList.get(i));

}

for (T item : list) {

System.out.println(item);

}

CSE 373 SP 18 - KASEY CHAMPION 7

Iterator!

Review: Iterators
iterator: a Java interface that dictates how a collection of data should be traversed. Can only
move in the forward direction and in a single pass.

8

Iterator Interface

hasNext() – true if elements
remain
next() – returns next element

behavior

supported operations:

hasNext() – returns true if the iteration has more elements yet to be
examined

next() – returns the next element in the iteration and moves the iterator
forward to next item

ArrayList<Integer> list = new ArrayList<Integer>();
//fill up list

Iterator<Integer> itr = list.iterator();
while (itr.hasNext()) {

int item = itr.next();
}

ArrayList<Integer> list = new ArrayList<Integer>();
//fill up list

for (int i : list) {
int item = i;

}

CSE 373 19 WI - KASEY CHAMPION

Implementing an Iterator
hasNext()

9

next()

23 14front

itr

true

itr

itr

itr

23 14front false

23 14front 4

23 14front 2
CSE 373 19 WI - KASEY CHAMPION

Testing Your Code

10CSE 373 19 WI - KASEY CHAMPION

Testing
Computers don’t make mistakes- people do!

“I’m almost done, I just need to make sure it works”
– Naive 14Xers

Software Test: a separate piece of code that exercises the code you are assessing by providing
input to your code and finishes with an assertion of what the result should be.

1. Isolate - break your code into small modules

2. Build in increments - Make a plan from simplest to most complex cases

3. Test as you go - As your code grows, so should your tests

CSE 373 SP 18 - KASEY CHAMPION 11

Types of Tests
Black Box
- Behavior only – ADT requirements
- From an outside point of view
- Does your code uphold its contracts with its users?
- Performance/efficiency

White Box
- Includes an understanding of the implementation
- Written by the author as they develop their code
- Break apart requirements into smaller steps
- “unit tests” break implementation into single assertions

CSE 373 SP 18 - KASEY CHAMPION 12

What to test?
Expected behavior

- The main use case scenario
- Does your code do what it should given friendly conditions?

Forbidden Input
- What are all the ways the user can mess up?

Empty/Null
- Protect yourself!
- How do things get started?
- 0, -1, null, empty collections

Boundary/Edge Cases
- First items
- Last item
- Full collections

Scale
- Is there a difference between 10, 100, 1000, 10000 items?

CSE 373 SP 18 - KASEY CHAMPION 13

Testing Strategies
You can’t test everything
- Break inputs into categories
- What are the most important pieces of code?

Test behavior in combination
- Call multiple methods one after the other
- Call the same method multiple times

Trust no one!
- How can the user mess up?

If you messed up, someone else might
- Test the complex logic

14CSE 373 19 WI - KASEY CHAMPION

Thought Experiment

Discuss with your neighbors: Imagine you are writing an implementation of the List interface that stores
integers in an Array. What are some ways you can assess your program’s correctness in the following
cases:

Expected Behavior
- Create a new list
- Add some amount of items to it
- Remove a couple of them

Forbidden Input
- Add a negative number
- Add duplicates
- Add extra large numbers

Empty/Null
- Call remove on an empty list
- Add to a null list
- Call size on an null list

CSE 373 SP 18 - KASEY CHAMPION 15

Boundary/Edge Cases
- Add 1 item to an empty list

- Set an item at the front of the list

- Set an item at the back of the list

Scale
- Add 1000 items to the list

- Remove 100 items in a row

- Set the value of the same item 50 times

5 Minutes

JUnit
JUnit: a testing framework that works with IDEs to give you a special GUI experience when
testing your code
@Test

public void myTest() {

Map<String, Integer> basicMap = new LinkedListDict<String, Integer>();

basicMap.put(“Kasey”, 42);

assertEquals(42, basicMap.get(“Kasey”));

}

Assertions:
- assertEquals(item1, item2)
- assertTrue(Boolean expression)
- assertFalse(bollean expression)
- assertNotNull(item)

CSE 373 SP 18 - KASEY CHAMPION 16More: https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html

https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html

