
Lecture 2: Stacks and
Queues

CSE 373: Data Structures and
Algorithms

CSE 373 19 WI - KASEY CHAMPION 1

Warm Up

1. Grab a worksheet

2. Introduce yourself to your neighbors J

3. Discuss the answers

4. Log onto www.socrative.com

5. Click “student login”

6. Enter “CSE373” as a room name

7. Enter your name Last, First

8. Answer question

9. Get extra credit!

CSE 373 19 WI - KASEY CHAMPION 2

http://www.socrative.com/

List ADT tradeoffs
Time needed to access i-th element:
- Array: O(1) constant time
- LinkedList: O(n) linear time

Time needed to insert at i-th element
- Array: O(n) linear time
- LinkedList: O(n) linear time

Amount of space used overall
- Array: sometimes wasted space
- LinkedList: compact

Amount of space used per element
- Array: minimal
- LinkedList: tiny extra

3

0 1 2 3 4

‘h’ ‘e’ ‘l’ ‘l’ ‘o’

‘h’ ‘o’ /‘e’ ‘l’ ‘l’

char[] myArr = new char[5]

front

LinkedList<Character> myLl = new LinkedList<Character>();

CSE 373 19 WI - KASEY CHAMPION

Design Decisions
Discuss with your neighbors: How would you implement the List ADT for each of the following
situations? For each consider the most important functions to optimize.

Situation #1: Write a data structure that implements the List ADT that will be used to store a list
of songs in a playlist.

LinkedList – optimize for growth of list and movement of songs
Situation #2: Write a data structure that implements the List ADT that will be used to store the
history of a bank customer’s transactions.

ArrayList – optimize for addition to back and accessing of elements
Situation #3: Write a data structure that implements the List ADT that will be used to store the
order of students waiting to speak to a TA at a tutoring center

LinkedList - optimize for removal from front
ArrayList – optimize for addition to back

4CSE 373 19 WI - KASEY CHAMPION

Review: What is a Stack?

stack: A collection based on the principle of adding elements

and retrieving them in the opposite order.

- Last-In, First-Out ("LIFO")

- Elements are stored in order of insertion.

- We do not think of them as having indexes.

- Client can only add/remove/examine

the last element added (the "top").

CSE 143 SP 17 – ZORA FUNG 5

top 3
2

bottom 1

pop, peekpush

Stack ADT

push(item) add item to top
pop() return and remove
item at top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior
Set of ordered items
Number of items

supported operations:

- push(item): Add an element to the top of stack

- pop(): Remove the top element and returns it

- peek(): Examine the top element without removing it

- size(): how many items are in the stack?

- isEmpty(): true if there are 1 or more items in stack, false otherwise

Implementing a Stack with an Array

0 1 2 3

6

push(3)
push(4)
pop()
push(5)

3 45

numberOfItems = 012

ArrayStack<E>

push data[size] = value, if
out of room grow data
pop return data[size - 1],
size-1
peek return data[size - 1]
size return size
isEmpty return size == 0

state

behavior

data[]
size

Big O Analysis
pop()

peek()

size()

isEmpty()

push() O(1) Constant or
worst case O(N) linear

O(1) Constant
O(1) Constant

O(1) Constant

O(1) Constant

CSE 373 19 WI - KASEY CHAMPION

Stack ADT

push(item) add item to top
pop() return and remove
item at top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

Implementing a Stack with Nodes

CSE 373 19 WI - KASEY CHAMPION 7

push(3)
push(4)
pop() numberOfItems = 012

LinkedStack<E>

push add new node at top
pop return and remove node at
top
peek return node at top
size return size
isEmpty return size == 0

state

behavior

Node top
size

Big O Analysis
pop()

peek()

size()

isEmpty()

push() O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

Stack ADT

push(item) add item to top
pop() return and remove
item at top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

4

3front

Review: What is a Queue?

queue: Retrieves elements in the order they were added.
- First-In, First-Out ("FIFO")

- Elements are stored in order of insertion but don't have indexes.

- Client can only add to the end of the queue, and can only
examine/remove the front of the queue.

CSE 143 SP 17 – ZORA FUNG 8

front back
1 2 3

addremove, peek
Queue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior
Set of ordered items
Number of items

supported operations:
- add(item): aka “enqueue” add an element to the back.

- remove(): aka “dequeue” Remove the front element and return.

- peek(): Examine the front element without removing it.

- size(): how many items are stored in the queue?

- isEmpty(): if 1 or more items in the queue returns true, false otherwise

Implementing a Queue with an Array

0 1 2 3 4

9

add(5)
add(8)
add(9)
remove()

numberOfItems = 0

5 8 9

123

ArrayQueue<E>

add – data[size] = value, if
out of room grow data
remove – return data[size -
1], size-1
peek – return data[size - 1]
size – return size
isEmpty – return size == 0

state

behavior

data[]
Size
front index
back index

Queue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

front = 0
back = 0

Big O Analysis
remove()

peek()

size()

isEmpty()

add() O(1) Constant or
worst case O(N) linear

O(1) Constant
O(1) Constant

O(1) Constant

O(1) Constant

12
1

CSE 373 19 WI - KASEY CHAMPION

Implementing a Queue with an Array

CSE 373 SP 18 - KASEY CHAMPION 10

0 1 2 3 4

numberOfItems = 3

front back

5 9 2 74

add(7)
add(4)
add(1)

45

0 1 2 3 4 5 6 7 8 9

5 9 2 7 4

front back

1

> Wrapping Around

Implementing a Queue with Nodes

11

add(5)
add(8)
remove()

LinkedQueue<E>

add – add node to back
remove – return and remove
node at front
peek – return node at front
size – return size
isEmpty – return size == 0

state

behavior

Node front
Node back
size

Queue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

Big O Analysis
remove()

peek()

size()

isEmpty()

add() O(1) Constant

O(1) Constant
O(1) Constant

O(1) Constant

O(1) Constant

CSE 373 19 WI - KASEY CHAMPION

numberOfItems = 012

85front

back

Review: Generics
// a parameterized (generic) class
public class name<TypeParameter> {

...
}

- Forces any client that constructs your object to supply a type
- Don't write an actual type such as String; the client does that
- Instead, write a type variable name such as E (for "element") or T (for

"type")
- You can require multiple type parameters separated by commas

- The rest of your class's code can refer to that type by name

12

public class Box {
private Object object;
public void set(Object object) {

this.object = object;
}
public Object get() {

return object;
}

}

public class Box<T> {
private T t;
public void set(T t) {

this.t = t;
}
public T get() {

return t;
}

}

More details: https://docs.oracle.com/javase/tutorial/java/generics/types.html
CSE 373 19 WI - KASEY CHAMPION

https://docs.oracle.com/javase/tutorial/java/generics/types.html

Implementing a Generic Stack

CSE 373 SP 18 - KASEY CHAMPION 13

