CSE 332: Data Abstractions

Autumn 2015

Final Exam

Name:

ID #:

TA:

INSTRUCTIONS:

e You have 110 minutes to complete the exam.

Section:

e The exam is closed book. You may not use cell phones or calculators.

e All answers you want graded should be written on the exam paper.

e |If you need extra space, use the back of a page.

e The problems are of varying difficulty.

e If you get stuck on a problem, move on and come back to it later.

e It is to your advantage to read all the problems before beginning the exam.

Problem | Points | Score || Problem | Points | Score
1 13 5 10
2 10 12
3 10 7 20
4 10 8 15
) 100

Page 1 of 11

One Liners.
This section has questions that require very short answers. To get full credit, you should
answer in no more than one sentence per question.

1. ASN [13 points]
For each of the following, answer ALWAYS, SOMETIMES, or NEVER. Give a brief (one sentence)
explanation of your answer for each.

(a) (2 points) In an implementation of the UnionFind ADT, find is O(1).

(b) (2 points) In an implementation of the UnionFind ADT, union is amortized O(1).

(c) (2 points) An algorithm that solves the SORT problem must have Q(nlgn) swaps.

(d) (2 points) SORT € P

(e) (2 points) CIRCUITSAT € NP

(f) (2 points) BST-FIND € NP (Given a BST T" and a number n, is n € T7)

(g) (1 point) Radix Sort can be used to sort a list of numerical data.

Page 2 of 11

Basic Techniques.
This part will test your ability to apply techniques that have been explicitly identified in lecture
and reinforced through sections and homeworks. Remember to show your work and justify

your claims.

2. RCTOA NDECOIIN [10 points]

Imagine we run main. Is there a race condition? If there is one, explain why by showing a bad interleaving

and explaining what the race is. If not, explain why not.

1 public static Lock lock = new ReentrantLock();
2 public static Stack<Integer> stack;
3 public statls YO}d maln(Strlng[] args) { 13 public int task() {
4 stack = <initialize stack with elements>; .
5 14 int count = 0;
. | .
6 Task t1 = <run tasks; 15 while (!stack.isEmpty()) {
16 lock.lock();
7 Task t2 = <run task>;
17 count += stack.pop();
8 tl.fork(); 18 lock.unlock();
9 t2.fork(); 19 } ! !
10 int sum = tl.join() + t2.join();
. " " 20 return count;
11 System.out.println("sum = " + sum);
12 3 21 }

Page 3 of 11

3. GOTO Considered Harmful; while loops considered okay [10 points]

80 4 6
a -90 > e
5
60
4 3 -5
70

(a) (6 points) Use Dijkstra's Algorithm to find the lengths of the shortest paths from a to each of the
other vertices. For full credit, you must show the worklist at every step, but how you show it is up to
you.

(b) (4 points) Are any of the lengths you computed using Dijkstra’s Algorithm in part (a) incorrect? For
each length that is incorrect, explain what the correct answer is and why the answer from part (a)
was incorrect.

Page 4 of 11

4. Spring Time! [10 points]

(a) (5 points) Use Kruskal's Algorithm to find two minimum spanning trees of the above graph.

(b) (5 points) Imagine that the above graph had some negative edges in it. Would Prim's Algorithm
necessarily return a correct result? Explain your answer in 1-2 sentences.

Page 5 of 11

5. Definitely A Graph! [10 points]
(a) (5 points) Suppose you are given a graph G. Explain how you would figure out if it has a cycle.

(b) (5 points) Suppose you are given a DAG G representing the work graph of a bunch of ForkJoin
tasks. Explain how you would determine the longest dependency path of G. What does the longest
dependency path in G represent with respect to the algorithm G?

Page 6 of 11

6. X-Tra [12 points]
Consider the expand problem. expand takes in an int[] and outputs a new int [] where each element
a[x] is copied a[x] times. For example,

expand([1, 2, 1, 4, 5, 3]) = [1, 2, 2, 1, 4, 4, 4, 4, 5, 5, 5, 5, 5, 3, 3, 3]
Give a high-level algorithm to solve the expand problem. DO NOT WRITE CODE! Your solution should

have O(n) work and O(lgn) span where n is the sum of the elements in the array. Be sure to explain
why your solution meets this bound.

Page 7 of 11

A Moment’'s Thought!
This section tests your ability to think a little bit more insightfully. The approaches necessary

to solve these problems may not be immediately obvious. Remember to show your work and
justify your claims.

7. Peek-a-boo [20 points]
(a) (15 points) Write a ForkJoin algorithm to solve the following problem:

Input(s): An int &, An array of ints with values between 0 and &
Output: The largest missing number in the array, or -1 if none of them is missing

Your solution must have O(n) work and O(Ign) span where n is the size of the input array. You may

assume that k is much smaller than n. You may not use any global data structures or synchronization
primitives (locks).

public class LargestMissingNumber {
private static final ForkJoinPool POOL = new ForkJoinPool();

public int largestMissingNumber(int k, int[] input) {

Page 8 of 11

(b) (5 points) Write recurrences for the work and the span for your solution in terms of n and k.

Page 9 of 11

8. FootPen Needs Your Help! [15 points]

A new social networking company called FootPen has arrived on the start-up scene. Because UW CSE
students are known to be the best in industry, FootPen has asked you to help them implement several
features. For each feature request,

e explain how to represent the problem as a graph,
e give a (high-level) idea for an algorithm to solve the problem, and

e give a runtime analysis of your algorithm.

(a) (5 points) How can FootPen determine the number of people that have at least one friend in common
with a particular user.

(b) (5 points) FootPen would like to add a “make a new friend” feature. To facilitate this feature, FootPen
has an algorithm that generates an “familiarity score” for every pair of friends. The familiarity score is
a real number between 0.0 and 1.0 which represents how well two users know each other. The closer
the score is to zero, the more friendly the two users are.

The “make a new friend” feature is intended to help users find a single user who they do not know
but are likely to get along with. We can estimate a familiarity score between two users who are not
friends by summing the scores of the shortest weight chain of friends that joins the two non-friends.

FootPen has run experiments and found that an estimated familiarity score of between 0.5 and 1 is
likely to indicate that two users do not already know each other but would make good friends.

How can FootPen write the “make a friend feature’™?

Page 10 of 11

(c) (5 points) Now that FootPen has become popular, the government has sent a request asking for
the group of people who correspond with each other the most. FootPen has records the number of
conversations each pair of users has in its database. How can FootPen identify the &k users with the
largest number of inter-communications?

Page 11 of 11

