
Section 06: Heaps and Sorting

1. Ternary Heaps

Consider the following sequence of numbers:

5, 20, 10, 6, 7, 3, 1, 2

(a) Insert these numbers into a min-heap where each node has up to three children, instead of two.

(So, instead of inserting into a binary heap, we’re inserting into a ternary heap.)

Draw out the tree representation of your completed ternary heap.

(b) Draw out the array representation of the above tree. In your array representation, you should start at index 0
(not index 1).

(c) Given a node at index i, write a formula to find the index of the parent.

(d) Given a node at index i, write a formula to find the j-th child. Assume that 0 ≤ j < 3.

2. Heaps – More Basics

(a) Insert the following sequence of numbers into a min heap:

[10, 7, 15, 17, 12, 20, 6, 32]

(b) Now, insert the same values into a max heap.

(c) Now, insert the same values into a min heap, but use Floyd’s buildHeap algorithm.

(d) Insert 1, 0, 1, 1, 0 into a min heap.

(e) Call removeMin three times on the min heap stored as the following array: [1, 5, 10, 6, 7, 13, 12, 8, 15, 9]

2.1. Sorting and Reversing (with Heaps)

(a) Suppose you have an array representation of a heap. Must the array be sorted?

(b) Suppose you have a sorted array (in increasing order). Must it be the array representation of a valid min-
heap?

(c) You have an array representation of a min-heap. If you reverse the array, does it become an array represen-
tation of a max-heap?

(d) Describe the most efficient algorithm you can think of to convert the array representation of a min-heap into
a max-heap. What is its running time?

1

3. Project Prep: contains

You just finished implementing your heap of ints when your boss tells you to add a new method called contains.
Your solution should not, in general, examine every element in the heap(do it recursively!)

public class DankHeap {

// NOTE: Data starts at index 0!

private int[] heapArray;

private int heapSize;

// Other heap methods here....

/**

* examine whether element k exists in the heap

* @param int k, the element to find.

* @return true if found, false otherwise

*/

public boolean contains(int k) {

// TODO!

}

}

(a) How efficient do you think you can make this method?

(b) Write code for contains. Remember that heapArray starts at index 0!

2

4. Sorting: Mystery

Consider the following sorting algorithm in pseudocode. Note that, in this case, the upper bound of each for loop
is inclusive, so they run up to and including i = A.length− 1 and j = i− 1.
1: function MysterySort(A)
2: for i = 1 to A.length− 1 do
3: for j = 0 to i− 1 do
4: if A[j] ≥ A[i] then
5: x = A[i]
6: shift every item from j to i− 1 right by one
7: A[j] = x
8: break

(a) Is MysterySort most similar to insertion sort, merge sort, quick sort, or selection sort?

(b) Is MysterySort a stable sorting algorithm? Why or why not?

(c) What is the best-case runtime (as a tight big-O bound) for MysterySort? Why is this the best case?

Hint: What happens when MysterySort is given an array that is already sorted?

5. Sorting: Design Decisions

For each of the following scenarios, say which sorting algorithm you think you would use and why. There may be
more than one right answer.

(a) Suppose we have an array where we expect the majority of elements to be sorted “almost in order”. What
would be a good sorting algorithm to use?

(b) You are writing code to run on the next Mars rover to sort the data gathered each night. (Think about sorting
with limited memory and computational power.)

(c) You’re writing the backend for the website SortMyNumbers.com, which sorts numbers given by users.

(d) Your artist friend says for a piece she wants to make a computer sort every possible ordering of the numbers
1, 2, . . . , 15. Your friend says something special will happen after the last ordering is sorted, and you’d like to
see that ASAP.

6. Sorting: Algorithm Practice

(a) Demonstrate how you would use quick sort to sort the following array of integers. Use the first index as the
pivot; show each partition and swap.

[6, 3, 2, 5, 1, 7, 4, 0]

(b) Show how you would use merge sort to sort the same array of integers.

3

7. Food For Thought: Recurrences and Heaps

Suppose we have a min heap implemented as a tree, based on the following classes:

class HeapNode {

HeapNode left;

HeapNode right;

int priority;

// constructors and methods omitted.

}

class Heap {

HeapNode root;

int size;

// constructors and methods omitted.

}

You just finished implementing your min heap and want to test it, so you write the following code to test whether
the heap property is satisfied.

boolean verify(Heap h) {

return verifyHelper(h.root);

}

boolean verifyHelper(HeapNode curr) {

if (curr == null)

return true;

if (curr.left != null && curr.priority > curr.left.priority)

return false;

if (curr.right != null && curr.priority > curr.right.priority)

return false;

return verifyHelper(curr.left) && verifyHelper(curr.right);

}

In this problem, we will use a recurrence to analyze the worst-case running time of verify.

(a) Write a recurrence to describe the worst-case running time of the function above. Hint: our recurrences
need an input integer, use the height of the subtree rooted at curr.

(b) Find an expression (using summations but no recursion) to describe the running time using the tree method.
Leave the overall height of the tree h as a variable in your expression.

(c) Simplify to a closed form.

(d) If a complete tree has height h, how many nodes could it have? Use this to determine a formula for the height
of a complete tree on n nodes.

(e) Use the formula from the last part to find the big-O of the verify.

8. Debugging Heaps of Problems

For this problem, wewill consider a hypothetical hash table that uses linear probing and implements the IDictionary
interface. Specifically, wewill focus on analyzing and testing one potential implementation of the removemethod.

4

(a) Come up with at least 4 different test cases to test this remove(...) method. For each test case, describe what
the expected outcome is (assuming the method is implemented correctly).

Try and construct test cases that check if the remove(...) method is correctly using the key’s hash code. (You
may assume that you can construct custom key objects that let you customize the behavior of the equals(...)
and hashCode() method.)

(b) Now, consider the following (buggy) implementation of the remove(...) method. List all the bugs you can
find.

public class LinearProbingDictionary<K, V> implements IDictionary<K, V> {

// Field invariants:

//

// 1. Empty, unused slots are null

// 2. Slots that are actually being used contain an instance of a Pair object

private Pair<K, V>[] array;

// ...snip...

public V remove(K key) {

int index = key.hashCode();

while ((this.array[index] != null) && !this.array[index].key.equals(key)) {

index = (index + 1) % this.array.length;

}

if (this.array[index] == null) {

throw new NoSuchKeyException();

}

V returnValue = this.array[index].value;

this.array[index] = null;

return returnValue;

}

}

(c) Briefly describe how you would fix these bug(s).

9. Memory: Short Answer

(a) What are the two types of memory locality?

(b) Does this more benefit arrays or linked lists?

10. Food For Thought: More Heaps

10.1. Running Times

Let’s think about the best and worst case for inserting into heaps.

You have elements of priority 1, 2, . . . , n. You’re going to insert the elements into a min heap one at a time (by
calling insert not buildHeap) in an order that you can control.

5

(a) Give an insertion order where the total running time of all insertions is Θ(n). Briefly justify why the total
time is Θ(n).

(b) Give an insertion order where the total running time of all insertions is Θ(n logn).

6

	1 Ternary Heaps
	2 Heaps – More Basics
	2.1 Sorting and Reversing (with Heaps)

	3 Project Prep: contains
	4 Sorting: Mystery
	5 Sorting: Design Decisions
	6 Sorting: Algorithm Practice
	7 Food For Thought: Recurrences and Heaps
	8 Debugging Heaps of Problems
	9 Memory: Short Answer
	10 Food For Thought: More Heaps
	10.1 Running Times

