Section 04: Dictionaries

Section Problems

1. Inserting keys

Consider the following AVL tree:

We now add the keys {21, 14,20, 19} (in that order). Show where these keys are added to the AVL tree. Show your
intermediate steps.

2. Constructing AVL trees

Draw an AVL Tree as each of the following keys are added in the order given. Show intermediate steps.

@
) 7«

{“penguin”, “stork”, “cat”, “fowl”, “moth”, “badger”, “otter”, “shrew”, “lion”, “raven”, “bat”}

(b)
{6,43,7,42,59, 63,11, 21, 56, 54, 27, 20, 36}

(0

” « 7« ” W« 7”7« 7«

{“indigo”, “fuscia”, “pink”, “goldenrod”, “violet”, “khaki”, “red”, “orange”, “maroon”, “crimson”, “green”, “mauve”

3. AVL tree rotations
Consider this AVL tree:

Give an example of a value you could insert to cause:

(a) A single rotation

(b) A double rotation
(c) No rotation

4. True or false?
(a) An insertion in an AVL tree with n nodes requires © (log(n)) rotations.

(b) A set of numbers are inserted into an empty BST in sorted order and inserted into an empty AVL tree in random

order. Listing all elements in sorted order from the BST is O (n), while listing them in sorted order from the
AVL tree is O (log(n)).

(c) If items are inserted into an empty BST in sorted order, then the BST’s get () is just as asymptotically efficient
as an AVL tree whose elements were inserted in unsorted order.

(d) An AVL tree will always do a maximum of two rotations in an insert.

5. Big-O

Write down a tight big-O for each of the following. Unless otherwise noted, give a bound in the worst case.

(a) Insert and find in a BST.

(b) Insert and find in an AVL tree.

(c) Finding the minimum value in an AVL tree containing n elements.
(d) Finding the k-th largest item in an AVL tree containing n elements.
(e) Listing elements of an AVL tree in sorted order

6. Hash table insertion

For each problem, insert the given elements into the described hash table. Do not worry about resizing the internal
array.

(a) Suppose we have a hash table that uses separate chaining and has an internal capacity of 12. Assume that
each bucket is a linked list where new elements are added to the front of the list.

Insert the following elements in the EXACT order given using the hash function h(z) = 4a:

0,4,7,1,2,3,6,11, 16

(b) Suppose we have a hash table that uses linear probing and has an internal capacity of 13.
Insert the following elements in the EXACT order given using the hash function h(z) = 3a:

2,4,6,7,15,13,19

(c) Suppose we have a hash table that uses quadratic probing and has an internal capacity of 10.
Insert the following elements in the EXACT order given using the hash function h(z) = z:

0,1,2,5,15, 25, 35

(d) Suppose we have a hash table implemented using separate chaining. This hash table has an internal capacity
of 10. Its buckets are implemented using a linked list where new elements are appended to the end. Do not
worry about resizing.

Show what this hash table internally looks like after inserting the following key-value pairs in the order given
using the hash function h(z) = a:

(1,a), (4,0),(2,¢),(17,d), (12,¢), (9, €), (19, f), (4, 9), (8,¢), (12,)

7. Evaluating hash functions
Consider the following scenarios.

(a) Suppose we have a hash table with an initial capacity of 12. We resize the hash table by doubling the capacity.
Suppose we insert integer keys into this table using the hash function h(z) = 4.

Why is this choice of hash function and initial capacity suboptimal? How can we fix it?

(b) Suppose we have a hash table with an initial capacity of 8 using quadratic probing. We resize the hash table
by doubling the capacity.

Suppose we insert the integer keys 220, 2 -220,3.220 4.220 _ using the hash function h(z) = x.

Describe what the runtime of the dictionary operations will over time as you keep adding these keys to the
table.

8. Analyzing dictionaries

(a) What are the constraints on the data types you can store in an AVL tree?
(b) When is using an AVL tree preferred over a hash table?
(c) When is using a BST preferred over an AVL tree?

(d) Consider an AVL tree with n nodes and a height of h. Now, consider a single call to get(...). What’s the
maximum possible number of nodes get(...) ends up visiting? The minimum possible?

(e) Challenge Problem: Consider an AVL tree with n nodes and a height of h. Now, consider a single call to
insert(...). What’s the maximum possible of nodes insert(...) ends up visiting? The minimum possible?
Don’t count the new node you create or the nodes visited during rotation(s).

9. Design

Imagine a database containing information about all trains leaving the Washington Union station on Monday. Each
train is assigned a departure time, a destination, and a unique 8-digit train ID number.

What data structures you would use to solve each of the following scenarios. Depending on scenario, you may need
to either (a) use multiple data structures or (b) modify the implementation of some data structure.

Justify your choice.

(a) Suppose the schedule contains 200 trains with 52 destinations. You want to easily list out the trains by
destination.

(b) In the question above, trains were listed by destination. Now, trains with the same destination should further
be sorted by departure time.

(c) A train station wants to create a digital kiosk. The kiosk should be able to efficiently and frequently complete
look-ups by train ID number so visitors can purchase tickets or track the location of a train. The kiosk should
also be able to list out all the train IDs in ascending order, for visitors who do not know their train ID.

Note that the database of trains is not updated often, so the removal and additions of new trains happen
infrequently (aside from when first populating your chosen DS with trains).

10. Testing and debugging

For this problem, we will consider a hypothetical hash table that uses linear probing and implements the IDictionary
interface. Specifically, we will focus on analyzing and testing one potential implementation of the remove method.

(a) Come up with at least 4 different test cases to test this remove(. . .) method. For each test case, describe what
the expected outcome is (assuming the method is implemented correctly).

Try and construct test cases that check if the remove(. ..) method is correctly using the key’s hash code. (You
may assume that you can construct custom key objects that let you customize the behavior of the equals(...)
and hashCode () method.)

(b) Now, consider the following (buggy) implementation of the remove(...) method. List all the bugs you can
find.

public class LinearProbingDictionary<K, V> implements IDictionary<K, V> {
// Field invariants:
//
// 1. Empty, unused slots are null
// 2. Slots that are actually being used contain an instance of a Pair object

private Pair<K, V>[] array;
// ...snip...

public V remove(K key) {
int index = key.hashCode();

while ((this.array[index] != null) && !this.array[index].key.equals(key)) {
index = (index + 1) % this.array.length;

}

if (this.array[index] == null) {
throw new NoSuchKeyException();
3

V returnValue = this.array[index].value;
this.array[index] = null;
return returnValue;

(c) Briefly describe how you would fix these bug(s).

Food For Thought

11. Algorithm design: easier

When writing mathematical expression, we typically write expressions in infix notation: in the form NUM OPERATOR
NUM. An example of an expression written in infix notation is 4 4 6 x 5. This expression evaluates to 34.

An alternative way we can write this expression is using post-fix notation: in the form NUM NUM OPERATOR. For
example, consider the following expression written in post-fix notation:

4, 67 57 *’ +

This expression is interpreted in the following way:
* Read and store 4
* Read and store 6
* Read and store 5
* Multiply the last two stored values (and remove them from storage), then store the result
* Add the last two stored values (and remove them from storage), then store the result
The last result stored is the final “output”. In this case, the expression above also evaluates to 34.

(a) Explain how you might apply or adapt the ADTs and data structures you've studied so far to evaluate an
expression written in post-fix notation. Assume you accept the expression you need to evaluate as a string.

(b) Give pseudocode for this algorithm.

12. Algorithm design: harder

(a) Given a BST, describe how you could convert it into an AVL tree. What is the runtime of your algorithm?

(b) Give pseudocode for an algorithm that verifies that a tree satisfies all of the AVL invariants in O (n) time.
Assume every node object has five fields: key, value, height, left, and right.
Be sure to verify that:
* The tree is actually binary search tree
* The height information of every node is correct
* Every node is balanced

Hint: rather then trying to check all three of these things in a single pass, try writing three separate methods:
one per each invariant. While it’s possible to check everything in one pass, doing so will be more challenging
to implement.

(As a reminder: If each method takes O (n) time, running all three of them will still take O (n) time.)

Challenge Problems

13. Random hash functions

In class we talked about various strategies to minimize collisions. In this question we discuss how to use randomness
to “spread out” collisions from a small set of very bad inputs into a larger set of almost-always-fine inputs. The last
two parts of this problem are beyond the scope of this course, but are interesting nonetheless.

For simplicity, assume our keyspace (the set of possible keys) is the set {0,1,2,...,23 — 1}. Suppose we have a
hashtable of size 2'°. Let a be an odd integer less than 23°.

he(z) = {(GCE)TDOdQ?’OJ

Consider the hash function
220

Notice that the function changes depending on the value of a we choose, so this is really a set of possible func-
tions.

(a) Show that for any a, h, outputs an integer between 0 and 2'° — 1 (i.e. we can use this as a hash function for
our table size)

(b) Choose a = 1, i.e. the hash function simplifies to

2z mod 230
hi(x) = {QQOJ

For this function, find a large set of elements that all hash to 0.

(c) Let z,y be any of the two elements you found in the last part. Choose a few thousand values of a, and check
whether h,(z) = h,(y) for each of them (write code for this part). For what fraction of these hash functions
do z, y collide? If the values of the hash function were totally random, how often would you expect collisions?

(d) The following statement is true (explaining why is beyond the scope of the course): For any z, y if you choose
a at random, the probability that h,(z) = h,(y) is at most 2/21°,

Use this fact, or your observations in the last part, to explain why you might decide to choose a random a
instead of just choosing a = 1 (hint: imagine you know someone is using the hash function with a = 1, how
can you use the first part to slow their code down? Can you do the same for a random a?)

	1 Inserting keys
	2 Constructing AVL trees
	3 AVL tree rotations
	4 True or false?
	5 Big-O
	6 Hash table insertion
	7 Evaluating hash functions
	8 Analyzing dictionaries
	9 Design
	10 Testing and debugging
	11 Algorithm design: easier
	12 Algorithm design: harder
	13 Random hash functions

