
Section 01: CSE 143 review, design decisions

1. CSE 143 review

1.1. Reference semantics

(a) What is the output of this program?

public class Mystery2 {

public static void main(String[] args) {

Point p = new Point(11, 22);

System.out.println(p);

int n = 5;

mystery(p, n);

System.out.println(p);

p.x = p.y;

mystery(p, n);

System.out.println(p);

Point p2 = new Point(100, 200);

p = p2;

mystery(p2, n);

System.out.println(p + ” :: ” + p2);

}

public static void mystery(Point p, int n) {

n = 0;

p.x = p.x + 33;

System.out.println(p.x + ”, ” + p.y + ” ” + n);

}

public static class Point {

public int x;

public int y;

public Point(int x, int y) {

this.x = x;

this.y = y;

}

public String toString() {

return ”(” + this.x + ”, ” + this.y + ”)”;

}

}

}
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1.2. Being an implementor of ArrayLists

Note: in this section, you are acting as an implementor of the MyArrayList data structure. Assume you are adding
to the following MyArrayList class:

public class MyArrayList<T> {

private T[] data;

private int size;

// constructors and other methods ommitted for space

}

For simplicity, assume the list does not contain any null items.

(a) Write a method removeFront that takes an integer k as a parameter and removes the first k values. For
example, if a variable called list stores this sequence of values:

[8, 17, 9, 24, 42, 3, 8]

If we call list.removeFront(4), the list should now store:

[42, 3, 8]

Assume that the parameter value passed is between 0 and the size of the list inclusive.

(b) Write a method removeBack that takes an integer k as a parameter and removes the last k values. For example,
if a variable called list stores this sequence of values:

[8, 17, 9, 24, 42, 3, 8]

If we call list.removeBack(4), the list should now store:

[8, 17, 9]

Assume that the parameter value passed is between 0 and the size of the list inclusive.

(c) Write a method removeAll that takes in an item of type T and removes all occurrences of that value from the
list.

For example, if the variable named list stores the following values:

[“a”, “b”, “c”, “d”, “a”, “d”, “d”, “e”, “f”, “d”]

If we call list.removeAll(“d”), the list should now store:

[“a”, “b”, “c”, “a”, “e”, “f”]

Assume you have previously implemented a method called remove that takes an index as a parameter and
removes the value at the given index.

(d) Write a method stretch that takes an integer k as a parameter and that increases a list by a factor of k by
taking each element in the original list and replacing it with k copies of that element. For example, if a variable
called list stores this squence of values:

[18.2, 7.5, 4.2, 24.9]

If we call list.stretch(3), the list should now store:

[18.2, 18.2, 18.2, 7.5, 7.5, 7.5, 4.2, 4.2, 4.2, 24.9, 24.9, 24.9]

Make sure to implement the logic to resize the array as necessary.
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1.3. Being an implementor of LinkedLists

Note: in this section, you are acting as an implementor of the MyLinkedList data structure. Assume you are adding
to the following MyLinkedList class:

public class MyLinkedList<T> {

private Node<T> front;

private static class Node<T> {

public final T data;

public Node<T> next;

// constructors omitted for space

}

}

Do not create any new nodes (unless you are trying to implement stretch). The focus of these problems is to
practice manipulating the links of list nodes. For simplicity, assume the list does not contain any null items.

(a) Try implementing the methods described in questions 1.2.a-1.2.d for MyLinkedList.

(b) Write a method switchPairs that switches the order of each pair of elements: your method should switch the
first two values, then the next two, and so forth. For example, if a variable called list stores this sequence of
values:

[3, 7, 4, 9, 8, 12]

If we call list.switchPairs(), the list should now store:

[7, 3, 9, 4, 12, 8]

If there are an odd number of values, the final element is not moved.

(c) Write a method reverse that reverses the order of elements in a linked list. For example, if a variable called
list stores this sequence of values:

[“a”, “b”, “c”, “d”, “e”]

If we call list.reverse(), the list should now store:

[“e”, “d”, “c”, “b”, “a”]

(d) Write a method transferFrom that accepts a second MyLinkedList as a parameter and moves values from the
second list to this list (and empties the second list). For example, suppose the two lists store these sequences
of values:

list1: [8, 17, 2, 4]

list2: [1, 2, 3]

The call of list1.transferFrom(list2), should leave the lists as follows:

list1: [8, 17, 2, 4, 1, 2, 3]

list2: []

Note that order matters: doing list2.transferFrom(list1) will NOT produce the same output as above.
Either list may be empty. Assume, however, that the given list will not be null.
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1.4. Being a client of Stacks and Queues

For the following problems, you will practice being the client of a data structure and two ADTs. Assume that you
are given a class named DoubleLinkedList that implements both the Stack and Queue interfaces.

For simplicity, assume the stacks and queues you are given will never contain any null elements.

(a) Write a static method copyStack that accepts an Stack<T> as a parameter and returns a new stack containing
exactly the same elements as the original. Your method should leave the original stack unchanged after the
method is over. You may use one Queue<T> as auxiliary storage.

(b) Write a static method named rearrange that accepts an Queue<Integer> and rearranges the values so that all
of the even values appear before the odd values and otherwise preserves the original order of the list. For
example, suppose a queue called q stores this sequence of values:

front [3, 5, 4, 17, 6, 83, 1, 84, 16, 37] back

If we call q.rearrange(), the queue should now store:

front [ 4, 6, 84, 16︸ ︷︷ ︸
evens

, 3, 5, 17, 83, 1, 37︸ ︷︷ ︸
odds

] back

Note that all of the evens are at the front, the odds are in the back, and that the order of the evens and the
odds are the same as the original list. You may use one Stack<Integer> as auxiliary storage.

(c) Write a static method named isPalindrome that accepts a Queue<T> as a parameter and returns true if those
values form a palindrome and false otherwise. For example, suppose a queue of ints called q stores this
sequence of values:

front [3, 5, 4, 17, 6, 6, 17, 4, 5, 3] back

Then calling isPalindrome would return true, because the queue is exactly the same forwards and backwards
(the definition of a palindromic object).

The queue must remain in its original state once the method is over. Assume that the empty queue is a
palindrome. You may use one Stack<T> as auxiliary storage.
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2. Food For Thought – Design decisions: ArrayLists vs. Linked Lists

Look back at the code you wrote in section 1.2 and 1.3. For each of the methods you wrote for both ArrayLists and
Linked Lists, determine the big-O running time for both versions of the code. In all of the following problems, let n
be the length of the list.

(a) removeFront(3)

(b) removeFront(n-3)

(c) removeBack(4)

(d) Suppose in your application you’ll call removeFront(3) repeatedly, and it’s critical that this be as efficient
as possible. Which implementation should you choose? What if it’s critical removeFront(n - 3) is efficient
instead? removeBack?

Challenge Problems:
Determine the big-O running time for both versions of the code. In all of the following problems, let n be the length
of the list.

(a) removeAll. For this question, you’ll need to think about how remove is likely to be implemented.

(b) stretch(k). For the purposes of this analysis, assume that the ArrayList will need to resize. In doing this
problem treat both n and k as variables.

3. Food For Thought – More Design decisions: Selecting ADTs and data
structures

For each of the following scenarios, choose:

(a) An ADT: Stack or Queue

(b) A data structure: array list or linked list with front or linked list with front and back

Justify your choice.

(a) You’re designing a tool that checks code to verify all opening brackets, braces, parenthesis, etc... have closing
counterparts.

(b) Disneyland has hired you to find a way to improve the processing efficiency of their long lines at attractions.
There is no way to forecast how long the lines will be.

(c) A sandwich shop wants to serve customers in the order that they arrived, but also wants to look ahead to
know what people have ordered and how many times to maximize efficiency in the kitchen.

5



4. Challenge Problems – Adapting ADTs and data structures

Choose appropriate ADTs, data structures, and algorithms to solve the following problems. You may use any ADT
and data structure you can think of, including ones covered in CSE 143. Feel free to be creative!

For your reference, between CSE 143 and 373 we’ve covered the following ADTs: Lists, Stacks, Queues, Sets, Maps,
PriorityQueues. We’ve also discussed the following data structures: array lists, linked lists, trees, hash maps.

(a) We want to call all the phone numbers with a particular area code in someone’s phone book.

Describe how you would implement this. What is the time complexity of your solution? The space complexity?

(b) Long long ago, before smartphones were a thing, people who wanted to enter text using phones needed some
way of entering arbitrary text using just 9 keys (the digits 1 through 9).

One such system is called “Text on nine keys” (T9). It associates 3 or 4 letters per each digit and lets you type
words using just a single keypress per letter. To do this, it takes the sequence of digits entered and looks up
all words corresponding to that sequence of keypresses within a fast-access dictionary of words and orders
them by frequency of use.

For example, if the user types in ‘2665’, the output could be the words [book, cook, cool]. Describe how
you would implement a T9 dictionary for a mobile phone.

(For reference, the number ‘2‘ is associated with the letters ‘abc’, the number ‘3’ is associated with ‘def’, etc...
The number ‘9‘ is associated with ‘wxyz’. The numbers ‘1’ and ‘0’ are used for other purposes.)

Describe how you would implement this. What is the time complexity of your solution? The space complexity?

(c) One refinement we could make to our T9 system is to train it so it “gains familiarity” with the words and
phrases the current user likes to commonly use. So, if a particular user uses the word “cool” more frequently
than the word “book”, eventually the T9 system, given the input ‘2665’, will learn to return [cool, book,

cook] instead of [book, cook, cool].

Describe how you would implement this. What is the time complexity of your solution? The space complexity?
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