
solution
Imagine that we are to implement a List with a linked list and that we want to write some tests for a set method
whose definition is below:

/**

* Overwrites the element located at the given index with the new value.

*

* @throws IndexOutOfBoundsException if the index < 0 or index >= this.size()

*/

public void set(int index, int value);

In this exercise, we’ll be writing tests before writing the implementation for this method. These types of tests are
called black-box tests, as the implementation details are like a black-box we can’t see inside. So instead of relying
on any knowledge of how the code is implemented, we’ll write tests based on the specification requirements above
(in your homework, this will be in comments in the code and on the website homework assignment pages).

Take some time to try and come up with test cases or things to check based on the specification. Reminder: test
cases are about checking that the result is what you expect, so it is often helpful to frame your test case ideas as:
”in X situation, make sure that Y happens/doesn’t happen/is true/is false”.

Here are some possible test cases or things to check:

solution:

• Make sure that an exception is thrown if index < 0 (Forbidden Input)

• Make sure that an exception is thrown if index ≥ this.size() (Forbidden Input)

• Make sure that the old element at the given index is gone and replaced with the new item (Expected
Behavior)

• Make sure that the other elements not at the given index are untouched (you generally can just combine this
and the above one to happen in every test, see below (Expected Behavior)

• Make sure that different valid positions for the index (front, middle, back) still sets properly (Bound-
ary/Edge Cases)

• Make sure that different valid values for the ’value’ parameter (seems like anything is valid) still sets properly
(Expected Behavior)

• Make sure that that exceptions are not thrown for valid indices (we’ll see that normally if exceptions are
thrown, then tests will fail by default - so we won’t need to explicitly add a test for this, because the other
general tests will cover it.) (Expected Behavior)

• Make sure that general cases work for different sizes (Scale)

Now let’s try implementing some of these as JUnit tests.
As mentioned earlier, the point of tests is to assert that the code meets our expectations for the behavior. So the
general structure of a JUnit test for method A will be something like:

1. set up your data structure / object

2. call method A

3. assert the result/effect of method A is what you expect

Typically, we will use a method called assertThat(actual, matcher) and pass in 2 parameters: the actual is
going to be the thing we want to check (a data structure, a return value from a method call, a variable, etc.) and
the matcher represents what we want to check about it (usually specified by calling a method). Below are a couple
of general examples to clarify:

1

assertThat(5 * 2, is(10));

assertThat("CSE 373 rocks?", containsString("373");

/** for TAs, the equivalent assertEquals/ other ways of doing it **/

assertEquals(10, 5 * 2);

Note: these tests are just trivial examples of assertThat – next we’ll go over some examples of actually using
assertThat to test our method behavior instead of math or String properties.

@Test

public void testSetGeneral() {

LinkedIntList list = new LinkedIntList(new int[]{2, 4, 6, 8, 10});

list.set(2, 100);

assertThat(list.get(2), is(100));

assertThat(list.get(0), is(2));

assertThat(list.get(1), is(4));

assertThat(list.get(3), is(8));

assertThat(list.get(4), is(10));

assertThat(list.size(), is(5));

}

@Test

public void testSetFront() {

LinkedIntList list = new LinkedIntList(new int[]{2, 4, 6, 8, 10});

list.set(0, 100);

assertThat(list.get(0), is(100));

assertThat(list.get(1), is(4));

assertThat(list.get(2), is(6));

assertThat(list.get(3), is(8));

assertThat(list.get(4), is(10));

assertThat(list.size(), is(5));

}

@Test

public void testSetBack() {

LinkedIntList list = new LinkedIntList(new int[]{2, 4, 6, 8, 10});

list.set(4, 100);

assertThat(list.get(4), is(100));

assertThat(list.get(0), is(2));

assertThat(list.get(1), is(4));

assertThat(list.get(2), is(6));

assertThat(list.get(3), is(8));

assertThat(list.size(), is(5));

}

@Test

public void testSetNegativeIndexThrowsException() {

LinkedIntList list = new LinkedIntList(new int[]{2, 4, 6, 8, 10});

2

assertThrows(IndexOutOfBoundsException.class, () -> { list.set(-1, 100); });

}

@Test

public void testSetTooLargeIndexThrowsException() {

LinkedIntList list = new LinkedIntList(new int[]{2, 4, 6, 8, 10});

assertThrows(IndexOutOfBoundsException.class, () -> { list.set(100, 100); });

}

You might notice is() is used a lot - whenever you want to check a simple value, you’ll probably want to use is()

as part of the last parameter.

Typically the way you write tests is copy structure from existing / given tests and then change them as you realize
what differences you want.

How do all the multiple calls to assertThat work in a single test? Every time assertThat is called, we’re making
sure that something else meets our expectation. If our expectations are not met and the assertion isn’t true (e.g.
list.get(0) is actually not 100), then an AssertionError will be thrown and the test fails. In IntelliJ, this will be
represented with a red circled X next to the specific test name that failed. If an assertThat method call passes,
however, it’ll just move on to the next line of code. If the test method finishes, then the test passes and will be
represented with a green circled check mark next to the test that passed.
Here’s a buggy implementation of set for a LinkedIntList that works in some cases.

public void set(int index, int value) {

ListNode current = front;

for (int i = 0; i < index - 1; i++) {

current = current.next;

}

ListNode newNode = new ListNode(value, current.next.next);

current.next = newNode;

}

Imagine we knew this was the implementation - let’s run our tests against this!
Another thing you can do is called clear box testing: try to look at the code now and find situations it could

break! Look for if/elses that you should test out, any places that have complicated logic and write tests that
attempt to trigger the complicated code. In general try triggering code that has to do with different combinations
of entering if/elses, entering/not entering loops, etc.

Here the bugs is that set doesn’t throw exceptions (could be caught by black box testing), and they don’t
handle if the front needs to be updated (could be caught by clear-box or black-box testing).

3

