
Lecture 23: P vs. NP Data Structures and

Algorithms

CSE 373 19 SU - ROBBIE WEBER 1

Administrivia

Project 4 and Exercise 5 due tonight

Exercise 3 scores out tonight.

Final review session tomorrow Sieg 134 at 1:10

CSE 373 19 SU - ROBBIE WEBER 2

Administrivia

Please fill out official UW course evaluations

-I’m trying to make teaching my full-time job soon

-Constructive criticism helps me get better.

-High response rate will help on the job market

-TAs appreciate your feedback on sections as well

We also have a “content survey”

-This course was redesigned a few years ago, and we’re still trying to make it better.

-It helps a lot to know what you thought helped and where your pain points were

-Google form:
- https://forms.gle/arVRDPT5nubkbvYc9

-We’ll award 2 lecture-attendances worth of extra credit for filling out the survey.

CSE 373 19 SU - ROBBIE WEBER 3

https://forms.gle/arVRDPT5nubkbvYc9

Goals for this lecture

Our topic today is part of CS culture.

I want to give you enough cultural knowledge to “fit in” when people reference it.

And to give you enough practical understanding to have a fighting chance if it comes up in
a real way at work.

It’s also REALLY cool

I’m going to try to give you a sense of why it’s the biggest unsolved question in CS.

CSE 417 covers this topic in more detail
- take that course (or talk to me some other time) to learn more

CSE 373 19 SU - ROBBIE WEBER 4

Last Lecture…

The Review Making Problem was a type of “Satisfiability” problem.

We had a bunch of variables (include/exclude this question) and needed to satisfy
everything in a list of requirements.

The algorithm we just made for Final Creation works for any 2-SAT problem.

CSE 373 19 SU - ROBBIE WEBER 5

Given: A set of Boolean variables, and a list of requirements, each of the form:
variable1==[True/False] || variable2==[True/False]

Find: A setting of variables to “true” and “false” so that all of the requirements

evaluate to “true”

2-Satisfiability (“2-SAT”)

Reductions

It might not be too surprising that we can solve one shortest path
problem with the algorithm for another shortest path problem.

The real power of reductions is that you can sometimes reduce a
problem to another one that looks very very different.

We’re going to reduce a graph problem to 2-SAT.

CSE 373 19 SU - ROBBIE WEBER 6

Given an undirected, unweighted graph 𝐺, color each vertex

“red” or “blue” such that the endpoints of every edge are

different colors (or report no such coloring exists).

2-Coloring

2-Coloring

Can these graphs be 2-colored? If so find a 2-coloring. If not try to
explain why one doesn’t exist.

CSE 373 19 SU - ROBBIE WEBER 7

B

D
E

A

C B

D
E

A

C

2-Coloring

Can these graphs be 2-colored? If so find a 2-coloring. If not try to
explain why one doesn’t exist.

CSE 373 19 SU - ROBBIE WEBER 8

B

D
E

A

C B

D
E

A

C

2-Coloring

Why would we want to 2-color a graph?

-We need to divide the vertices into two sets, and edges represent
vertices that can’t be together.

You can modify [B/D]FS to come up with a 2-coloring (or determine
none exists)

-This is a good exercise!

But coming up with a whole new idea sounds like work.

And we already came up with that cool 2-SAT algorithm.

-Maybe we can be lazy and just use that!

-Let’s reduce 2-Coloring to 2-SAT!

CSE 373 19 SU - ROBBIE WEBER 9

Use our 2-SAT algorithm

to solve 2-Coloring

A Reduction

We need to describe 2 steps

1. How to turn a graph for a 2-color problem into an input to 2-SAT

2. How to turn the ANSWER for that 2-SAT input into the answer for the
original 2-coloring problem.

How can I describe a two coloring of my graph?

-Have a variable for each vertex – is it red?

How do I make sure every edge has different colors? I need one red endpoint
and one blue one, so this better be true to have an edge from v1 to v2:

(v1IsRed || v2isRed) && (!v1IsRed || !v2IsRed)

CSE 373 19 SU - ROBBIE WEBER 10

AisRed = True

BisRed = False

CisRed = True

DisRed = False

EisRed = True

B

D
E

A

C

B

D
EA

C
(AisRed||BisRed)&&(!AisRed||!BisRed)

(AisRed||DisRed)&&(!AisRed||!DisRed)

(BisRed||CisRed)&&(!BisRed||!CisRed)

(BisRed||EisRed)&&(!BisRed||!EisRed)

(DisRed||EisRed)&&(!DisRed||!EisRed)

CSE 373 19 SU - ROBBIE WEBER 11

Transform Input

2-SAT Algorithm

Transform Output

Efficiency, P vs. NP

CSE 373 19 SU - ROBBIE WEBER 12

Taking a step back

The main theme of this quarter has been doing things faster.

You might get the impression at this point that if you’re clever enough and use (or invent)
the right data structures that you can do anything.

And you can do A LOT
But you probably can’t do everything.

Our goal for today is to divide problems into those where a computer can find an answer in
a reasonable amount of time and those where a computer probably can’t.

CSE 373 19 SU - ROBBIE WEBER 13

Running Times

Table from Rosen’s Discrete Mathematics textbook

How big of a problem can we solve for an algorithm with the given running times?

“*” means more than 10100 years.

CSE 373 19 SU - ROBBIE WEBER 14

Efficient

We’ll consider a problem “efficiently solvable” if it has a polynomial time
algorithm.

I.e. an algorithm that runs in time 𝑂(𝑛𝑘) where 𝑘 is a constant.

Are these algorithms always actually efficient?

Well………no

Your 𝑛10000 algorithm or even your 22
22

2

⋅ 𝑛3 algorithm probably aren’t
going to finish anytime soon.

But these edge cases are rare, and polynomial time is good as a low bar

-If we can’t even find an 𝑛10000 algorithm, we should probably rethink
our strategy

CSE 373 19 SU - ROBBIE WEBER 15

Decision Problems

Our goal is to divide problems into solvable/not solvable.
For today, we’re going to talk about decision problems.

Problems that have a “yes” or “no” answer.

Why?

Theory reasons (ask me later).

But it’s not too bad
-most problems can be rephrased as very similar decision problems.

E.g. instead of “find the shortest path from s to t” ask
Is there a path from s to t of length at most 𝑘?

CSE 373 19 SU - ROBBIE WEBER 16

P (can be solved efficiently)

The set of all decision problems that have an algorithm that runs

in time 𝑂 𝑛𝑘 for some constant 𝑘.

P (stands for “Polynomial”)

The decision version of all problems we’ve solved in this class are in P.

P is an example of a “complexity class”

A set of problems that can be solved under some limitations (e.g. with

some amount of memory or in some amount of time).

CSE 373 19 SU - ROBBIE WEBER 17

NP

CSE 373 19 SU - ROBBIE WEBER 18

The set of all decision problems such that if the answer is YES, there is a

proof of that which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

It’s a common misconception that NP stands for “not polynomial”

Never, ever, ever, ever say “NP” stands for “not polynomial”

Please

Every time someone says that, a theoretical computer scientist sheds a single tear

(That theoretical computer scientist is me)

Our second set of problems have the property that “I’ll know it when I see it”

We’re looking for something, and if it’s there, we can recognize it quickly (it just

might be hard to find)

NP

CSE 373 19 SU - ROBBIE WEBER

2-Coloring:

Can you color vertices of a graph

red and blue so every edge has

differently colored endpoints?

Light Spanning Tree:

Is there a spanning tree of graph

𝐺 of weight at most 𝑘?

2-SAT:

Given a set of variables and a list of

requirements:

(variable==[T/F] || variable==[T/F])

Find a setting of the variables to make

every requirement true.

19

The spanning tree itself.

Verify by checking it really

connects every vertex and its

weight.
The assignment of variables.

Verify by checking each requirement.

The coloring.

Verify by checking each edge.

The set of all decision problems such that if the

answer is YES, there is a proof of that which can

be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

Decision Problems such that:

If the answer is YES, you can prove the answer is yes

by
Being given a “proof” or a “certificate”

Verifying that certificate in polynomial time.

What certificate would be convenient for short paths?

The path itself. Easy to check the path is really in

the graph and really short.

P vs. NP

No one knows the answer to this question.

In fact, it’s the biggest unsolved question in Computer Science.

Are P and NP the same complexity class?

That is, can every problem that can be verified in polynomial time

also be solved in polynomial time.

P vs. NP

CSE 373 19 SU - ROBBIE WEBER 20

Hard Problems

Let’s say we want to prove that every problem in NP can actually be
solved efficiently.

We might want to start with a really hard problem in NP.

What is the hardest problem in NP?

What does it mean to be a hard problem?

Reductions are a good definition:
-If A reduces to B then “A ≤ B” (in terms of difficulty)

- Once you have an algorithm for B, you have one for A automatically from the reduction!

CSE 373 19 SU - ROBBIE WEBER 21

NP-Completeness

An NP-complete problem is a “hardest” problem in NP.

If you have an algorithm to solve an NP-complete problem, you have an
algorithm for every problem in NP.

An NP-complete problem is a universal language for encoding “I’ll know it
when I see it” problems.

Does one of these exist?

CSE 373 19 SU - ROBBIE WEBER

The problem B is NP-complete if B is in NP and

for all problems A in NP, A reduces to B.

NP-complete

22

NP-Completeness

An NP-complete problem does exist!

3-SAT is NP-complete

Cook-Levin Theorem (1971)

CSE 373 19 SU - ROBBIE WEBER 23

This sentence (and the proof of it) won Cook the Turing Award.

2-SAT vs. 3-SAT

CSE 373 19 SU - ROBBIE WEBER

Given: A set of Boolean variables, and a list of requirements, each of the form:
variable1==[True/False] || variable2==[True/False]

Find: A setting of variables to “true” and “false” so that all of the requirements

evaluate to “true”

2-Satisfiability (“2-SAT”)

Given: A set of Boolean variables, and a list of requirements, each of the form:

variable1==[True/False]||variable2==[True/False]||variable3==[True/False]

Find: A setting of variables to “true” and “false” so that all of the requirements

evaluate to “true”

3-Satisfiability (“3-SAT”)

24

2-SAT vs. 3-SAT

CSE 373 19 SU - ROBBIE WEBER

Given: A set of Boolean variables, and a list of requirements, each of the form:
variable1==[True/False] || variable2==[True/False]

Find: A setting of variables to “true” and “false” so that all of the requirements

evaluate to “true”

2-Satisfiability (“2-SAT”)

25

Our first try at 2-SAT (just try all variable settings) would have taken

𝑂 2𝑄𝑆 time.

But we came up with a really clever graph that reduced the time to

𝑂 𝑄 + 𝑆 time.

2-SAT vs. 3-SAT

CSE 373 19 SU - ROBBIE WEBER

Given: A set of Boolean variables, and a list of requirements, each of the form:

variable1==[True/False]||variable2==[True/False]||variable3==[True/False]

Find: A setting of variables to “true” and “false” so that all of the requirements

evaluate to “true”

3-Satisfiability (“3-SAT”)

26

Can we do the same for 3-SAT?

For 2-SAT we thought we had 2𝑄 options, but we realized that we didn’t

have as many choices as we thought – once we made a few choices, our

hand was forced and we didn’t have to check all possibilities.

NO
recurrence

NO

Big-O

NP-Complete Problems

But Wait! There’s more!

A lot of problems are

NP-complete

Karp’s Theorem (1972)

CSE 373 19 SU - ROBBIE WEBER 27

NP-Complete Problems

But Wait! There’s more!

By 1979, at least 300 problems had been
proven NP-complete.

Garey and Johnson put a list of all the NP-
complete problems they could find in this
textbook.

Took almost 100 pages to just list them all.

No one has made a comprehensive list since.

CSE 373 19 SU - ROBBIE WEBER 28

NP-Complete Problems

But Wait! There’s more!

In December 2018, mathematicians and computer scientists put papers
on the arXiv claiming to show (at least) 25 more problems are NP-
complete.

There are literally thousands of NP-complete problems known.

CSE 373 19 SU - ROBBIE WEBER 29

Dealing with NP-completeness

Thousands of times someone has wanted to find an efficient algorithm for a problem…

…only to realize that the problem was NP-complete.

Sooner or later it will happen to one of you.

What do you do if you think your problem is NP-complete?

CSE 373 19 SU - ROBBIE WEBER 32

Dealing with NP-completeness

You just started your new job at Amazon. Your boss asks you to look into the
following problem

You have a graph, each vertex is where a specific truck has to do a delivery.
Starting from the warehouse, how do you make all the deliveries and return to the
warehouse using the minimum amount of gas.

This problem is NP-complete. So you tell your boss, and they say…
- That’s a cool theorem and all. But really we need to use less gas.

CSE 373 19 SU - ROBBIE WEBER 33

Given a weighted graph, find a tour (a walk that visits every vertex

and returns to its start) of weight at most 𝑘.

Traveling Salesperson

Dealing with NP-Completeness

Option 1: Maybe your problem isn’t really NP-complete; it’s a special
case we understand

Maybe you don’t need to solve the general problem, just a special case

Option 2: Maybe your problem isn’t really NP-complete; it’s a special
case we don’t understand (yet)

There are algorithms that are known to run quickly on “nice” instances.
Maybe your problem has one of those.

One approach: Turn your problem into a SAT instance, find a solver and
cross your fingers.

Analogy: Insertion sort (great if your list is almost sorted. Really slow
otherwise)

CSE 373 19 SU - ROBBIE WEBER 34

Dealing with NP-Completeness

Option 3: Approximation Algorithms

You might not be able to get an exact answer, but you might be able to
get close.

Given a weighted graph, find a tour (a walk that visits every vertex

and returns to its start) of minimum weight.

Optimization version of Traveling Salesperson

Algorithm:

Find a minimum spanning tree.

Have the tour follow the visitation order of a DFS of the spanning tree.

Theorem: This tour is at most twice as long as the best one.

CSE 373 19 SU - ROBBIE WEBER 35

Why should you care about P vs. NP

Most computer scientists are convinced that P≠NP.
-A survey of experts (PhDs in CS) found 98% of them thought P≠NP.

-And the median guess was that we’re at least 50 years from getting the answer.

Why should you care about this problem?

It’s your chance for:

$1,000,000. The Clay Mathematics Institute will give $1,000,000 to
whoever solves P vs. NP (or any of the 5 remaining mathematical
conjectures they listed)

To get a Turing Award

CSE 373 19 SU - ROBBIE WEBER 36

Why should you care about P vs. NP

Most computer scientists are convinced that P≠NP.
-A survey of experts (PhDs in CS) found 98% of them thought P≠NP.

-And the median guess was that we’re at least 50 years from getting the answer.

Why should you care about this problem?

It’s your chance for:

$1,000,000. The Clay Mathematics Institute will give $1,000,000 to
whoever solves P vs. NP (or any of the 5 remaining mathematical
conjectures they listed)

To get a Turing Award the Turing Award renamed after you.

CSE 373 19 SU - ROBBIE WEBER 37

Why Should You Care if P=NP?

Suppose P=NP.

Specifically that we found a genuinely in-practice efficient algorithm for
an NP-complete problem. What would you do?

-$1,000,000 from the Clay Math Institute obviously, but what’s next?

CSE 373 19 SU - ROBBIE WEBER 38

Why Should You Care if P=NP?

We found a genuinely in-practice efficient algorithm for an NP-
complete problem. What would you do?

-Another $5,000,000 from the Clay Math Institute

-Put mathematicians out of work.

-Decrypt (essentially) all current internet communication.

-No more secure online shopping or online banking or online
messaging…or online anything.

A world where P=NP is a very very different place from the world we
live in now.

CSE 373 19 SU - ROBBIE WEBER 39

Why Should You Care if P≠NP?

We already expect P≠NP. Why should you care when we finally prove it?

P≠NP says something fundamental about the universe.

For some questions there is not a clever way to find the right answer

-Even though you’ll know it when you see it.

There is actually a way to obscure information, so it cannot be found
quickly no matter how clever you are.

CSE 373 19 SU - ROBBIE WEBER 40

Why Should You Care if P≠NP?

To prove P≠NP we need to better understand the differences between
problems.

-Why do some problems allow easy solutions and others don’t?

-What is the structure of these problems?

We don’t care about P vs NP just because it has a huge effect about
what the world looks like.

We will learn a lot about computation along the way.

CSE 373 19 SU - ROBBIE WEBER 41

