
Lecture 23: P vs. NP Data Structures and 

Algorithms
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Administrivia

Project 4 and Exercise 5 due tonight

Exercise 3 scores out tonight.

Final review session tomorrow Sieg 134 at 1:10
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Administrivia

Please fill out official UW course evaluations

-I’m trying to make teaching my full-time job soon

-Constructive criticism helps me get better.

-High response rate will help on the job market

-TAs appreciate your feedback on sections as well

We also have a “content survey”

-This course was redesigned a few years ago, and we’re still trying to make it better.

-It helps a lot to know what you thought helped and where your pain points were

-Google form:
- https://forms.gle/arVRDPT5nubkbvYc9

-We’ll award 2 lecture-attendances worth of extra credit for filling out the survey.
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https://forms.gle/arVRDPT5nubkbvYc9


Goals for this lecture

Our topic today is part of CS culture.

I want to give you enough cultural knowledge to “fit in” when people reference it.

And to give you enough practical understanding to have a fighting chance if it comes up in 
a real way at work.

It’s also REALLY cool

I’m going to try to give you a sense of why it’s the biggest unsolved question in CS.

CSE 417 covers this topic in more detail
- take that course (or talk to me some other time) to learn more
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Last Lecture…

The Review Making Problem was a type of “Satisfiability” problem.

We had a bunch of variables (include/exclude this question) and needed to satisfy 
everything in a list of requirements. 

The algorithm we just made for Final Creation works for any 2-SAT problem. 
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Given: A set of Boolean variables, and a list of requirements, each of the form: 
variable1==[True/False] || variable2==[True/False]

Find: A setting of variables to “true” and “false” so that all of the requirements 

evaluate to “true”

2-Satisfiability (“2-SAT”)



Reductions

It might not be too surprising that we can solve one shortest path 
problem with the algorithm for another shortest path problem.

The real power of reductions is that you can sometimes reduce a 
problem to another one that looks very very different.

We’re going to reduce a graph problem to 2-SAT. 
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Given an undirected, unweighted graph 𝐺, color each vertex 

“red” or “blue” such that the endpoints of every edge are 

different colors (or report no such coloring exists).

2-Coloring



2-Coloring

Can these graphs be 2-colored? If so find a 2-coloring. If not try to 
explain why one doesn’t exist.
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2-Coloring

Can these graphs be 2-colored? If so find a 2-coloring. If not try to 
explain why one doesn’t exist.
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2-Coloring

Why would we want to 2-color a graph?

-We need to divide the vertices into two sets, and edges represent 
vertices that can’t be together.

You can modify [B/D]FS to come up with a 2-coloring (or determine 
none exists)

-This is a good exercise!

But coming up with a whole new idea sounds like work.

And we already came up with that cool 2-SAT algorithm. 

-Maybe we can be lazy and just use that!

-Let’s reduce 2-Coloring to 2-SAT!
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Use our 2-SAT algorithm 

to solve 2-Coloring



A Reduction

We need to describe 2 steps

1. How to turn a graph for a 2-color problem into an input to 2-SAT

2. How to turn the ANSWER for that 2-SAT input into the answer for the 
original 2-coloring problem.

How can I describe a two coloring of my graph? 

-Have a variable for each vertex – is it red?

How do I make sure every edge has different colors? I need one red endpoint 
and one blue one, so this better be true to have an edge from v1 to v2:

(v1IsRed || v2isRed) && (!v1IsRed || !v2IsRed)
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AisRed = True

BisRed = False

CisRed = True

DisRed = False

EisRed = True

B

D
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A

C

B

D
EA

C
(AisRed||BisRed)&&(!AisRed||!BisRed)

(AisRed||DisRed)&&(!AisRed||!DisRed)

(BisRed||CisRed)&&(!BisRed||!CisRed)

(BisRed||EisRed)&&(!BisRed||!EisRed)

(DisRed||EisRed)&&(!DisRed||!EisRed)
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Transform Input

2-SAT Algorithm

Transform Output



Efficiency, P vs. NP
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Taking a step back

The main theme of this quarter has been doing things faster.

You might get the impression at this point that if you’re clever enough and use (or invent) 
the right data structures that you can do anything.

And you can do A LOT
But you probably can’t do everything.

Our goal for today is to divide problems into those where a computer can find an answer in 
a reasonable amount of time and those where a computer probably can’t.
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Running Times

Table from Rosen’s Discrete Mathematics textbook

How big of a problem can we solve for an algorithm with the given running times?

“*” means more than 10100 years. 

CSE 373 19 SU - ROBBIE WEBER 14



Efficient

We’ll consider a problem “efficiently solvable” if it has a polynomial time 
algorithm.

I.e. an algorithm that runs in time 𝑂(𝑛𝑘) where 𝑘 is a constant.

Are these algorithms always actually efficient?

Well………no

Your 𝑛10000 algorithm or even your 22
22

2

⋅ 𝑛3 algorithm probably aren’t 
going to finish anytime soon.

But these edge cases are rare, and polynomial time is good as a low bar

-If we can’t even find an 𝑛10000 algorithm, we should probably rethink 
our strategy
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Decision Problems

Our goal is to divide problems into solvable/not solvable.
For today, we’re going to talk about decision problems.

Problems that have a “yes” or “no” answer.

Why?

Theory reasons (ask me later).

But it’s not too bad
-most problems can be rephrased as very similar decision problems.

E.g. instead of “find the shortest path from s to t” ask
Is there a path from s to t of length at most 𝑘? 
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P (can be solved efficiently)

The set of all decision problems that have an algorithm that runs 

in time 𝑂 𝑛𝑘 for some constant 𝑘.

P (stands for “Polynomial”)

The decision version of all problems we’ve solved in this class are in P.

P is an example of a “complexity class”

A set of problems that can be solved under some limitations (e.g. with 

some amount of memory or in some amount of time).
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NP
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The set of all decision problems such that if the answer is YES, there is a 

proof of that which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

It’s a common misconception that NP stands for “not polynomial”

Never, ever, ever, ever say “NP” stands for “not polynomial” 

Please

Every time someone says that, a theoretical computer scientist sheds a single tear

(That theoretical computer scientist is me)

Our second set of problems have the property that “I’ll know it when I see it”

We’re looking for something, and if it’s there, we can recognize it quickly (it just 

might be hard to find)



NP
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2-Coloring:

Can you color vertices of a graph 

red and blue so every edge has 

differently colored endpoints?

Light Spanning Tree:

Is there a spanning tree of graph 

𝐺 of weight at most 𝑘?

2-SAT:

Given a set of variables and a list of 

requirements:

(variable==[T/F] || variable==[T/F])

Find a setting of the variables to make 

every requirement true.

19

The spanning tree itself.

Verify by checking it really 

connects every vertex and its 

weight.
The assignment of variables.

Verify by checking each requirement.

The coloring.

Verify by checking each edge.

The set of all decision problems such that if the 

answer is YES, there is a proof of that which can 

be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

Decision Problems such that:

If the answer is YES, you can prove the answer is yes 

by 
Being given a “proof” or a “certificate”

Verifying that certificate in polynomial time. 

What certificate would be convenient for short paths? 

The path itself. Easy to check the path is really in 

the graph and really short.



P vs. NP

No one knows the answer to this question. 

In fact, it’s the biggest unsolved question in Computer Science.

Are P and NP the same complexity class? 

That is, can every problem that can be verified in polynomial time 

also be solved in polynomial time.

P vs. NP
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Hard Problems

Let’s say we want to prove that every problem in NP can actually be 
solved efficiently.

We might want to start with a really hard problem in NP. 

What is the hardest problem in NP?

What does it mean to be a hard problem?

Reductions are a good definition:
-If A reduces to B then “A ≤ B” (in terms of difficulty)

- Once you have an algorithm for B, you have one for A automatically from the reduction!
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NP-Completeness

An NP-complete problem is a “hardest” problem in NP.

If you have an algorithm to solve an NP-complete problem, you have an 
algorithm for every problem in NP. 

An NP-complete problem is a universal language for encoding “I’ll know it 
when I see it” problems.

Does one of these exist?
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The problem B is NP-complete if B is in NP and 

for all problems A in NP, A reduces to B. 

NP-complete
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NP-Completeness

An NP-complete problem does exist!

3-SAT is NP-complete 

Cook-Levin Theorem (1971)
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This sentence (and the proof of it) won Cook the Turing Award.



2-SAT vs. 3-SAT
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Given: A set of Boolean variables, and a list of requirements, each of the form: 
variable1==[True/False] || variable2==[True/False]

Find: A setting of variables to “true” and “false” so that all of the requirements 

evaluate to “true”

2-Satisfiability (“2-SAT”)

Given: A set of Boolean variables, and a list of requirements, each of the form: 

variable1==[True/False]||variable2==[True/False]||variable3==[True/False]

Find: A setting of variables to “true” and “false” so that all of the requirements 

evaluate to “true”

3-Satisfiability (“3-SAT”)
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2-SAT vs. 3-SAT
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Given: A set of Boolean variables, and a list of requirements, each of the form: 
variable1==[True/False] || variable2==[True/False]

Find: A setting of variables to “true” and “false” so that all of the requirements 

evaluate to “true”

2-Satisfiability (“2-SAT”)
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Our first try at 2-SAT (just try all variable settings) would have taken 

𝑂 2𝑄𝑆 time. 

But we came up with a really clever graph that reduced the time to 

𝑂 𝑄 + 𝑆 time.



2-SAT vs. 3-SAT
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Given: A set of Boolean variables, and a list of requirements, each of the form: 

variable1==[True/False]||variable2==[True/False]||variable3==[True/False]

Find: A setting of variables to “true” and “false” so that all of the requirements 

evaluate to “true”

3-Satisfiability (“3-SAT”)
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Can we do the same for 3-SAT? 

For 2-SAT we thought we had 2𝑄 options, but we realized that we didn’t 

have as many choices as we thought – once we made a few choices, our 

hand was forced and we didn’t have to check all possibilities.

NO 
recurrence

NO 

Big-O



NP-Complete Problems

But Wait! There’s more!

A lot of problems are 

NP-complete

Karp’s Theorem (1972)
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NP-Complete Problems

But Wait! There’s more!

By 1979, at least 300 problems had been 
proven NP-complete.

Garey and Johnson put a list of all the NP-
complete problems they could find in this 
textbook.

Took almost 100 pages to just list them all.

No one has made a comprehensive list since.
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NP-Complete Problems

But Wait! There’s more!

In December 2018, mathematicians and computer scientists put papers 
on the arXiv claiming to show (at least) 25 more problems are NP-
complete.

There are literally thousands of NP-complete problems known. 
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Dealing with NP-completeness

Thousands of times someone has wanted to find an efficient algorithm for a problem…

…only to realize that the problem was NP-complete.

Sooner or later it will happen to one of you.

What do you do if you think your problem is NP-complete?
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Dealing with NP-completeness

You just started your new job at Amazon. Your boss asks you to look into the 
following problem

You have a graph, each vertex is where a specific truck has to do a delivery. 
Starting from the warehouse, how do you make all the deliveries and return to the 
warehouse using the minimum amount of gas.

This problem is NP-complete. So you tell your boss, and they say…
- That’s a cool theorem and all. But really we need to use less gas.
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Given a weighted graph, find a tour (a walk that visits every vertex 

and returns to its start) of weight at most 𝑘.

Traveling Salesperson



Dealing with NP-Completeness

Option 1: Maybe your problem isn’t really NP-complete; it’s a special 
case we understand

Maybe you don’t need to solve the general problem, just a special case

Option 2:  Maybe your problem isn’t really NP-complete; it’s a special 
case we don’t understand (yet)

There are algorithms that are known to run quickly on “nice” instances. 
Maybe your problem has one of those.

One approach: Turn your problem into a SAT instance, find a solver and 
cross your fingers.

Analogy: Insertion sort (great if your list is almost sorted. Really slow 
otherwise)
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Dealing with NP-Completeness

Option 3: Approximation Algorithms

You might not be able to get an exact answer, but you might be able to 
get close.

Given a weighted graph, find a tour (a walk that visits every vertex 

and returns to its start) of minimum weight.

Optimization version of Traveling Salesperson

Algorithm:

Find a minimum spanning tree.

Have the tour follow the visitation order of a DFS of the spanning tree.

Theorem: This tour is at most twice as long as the best one.
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Why should you care about P vs. NP

Most computer scientists are convinced that P≠NP.
-A survey of experts (PhDs in CS) found 98% of them thought P≠NP.

-And the median guess was that we’re at least 50 years from getting the answer.

Why should you care about this problem?

It’s your chance for:

$1,000,000. The Clay Mathematics Institute will give $1,000,000 to 
whoever solves P vs. NP (or any of the 5 remaining mathematical 
conjectures they listed)

To get a Turing Award
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Why should you care about P vs. NP

Most computer scientists are convinced that P≠NP.
-A survey of experts (PhDs in CS) found 98% of them thought P≠NP.

-And the median guess was that we’re at least 50 years from getting the answer.

Why should you care about this problem?

It’s your chance for:

$1,000,000. The Clay Mathematics Institute will give $1,000,000 to 
whoever solves P vs. NP (or any of the 5 remaining mathematical 
conjectures they listed)

To get a Turing Award the Turing Award renamed after you. 
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Why Should You Care if P=NP?

Suppose P=NP. 

Specifically that we found a genuinely in-practice efficient algorithm for 
an NP-complete problem. What would you do?

-$1,000,000 from the Clay Math Institute obviously, but what’s next?
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Why Should You Care if P=NP?

We found a genuinely in-practice efficient algorithm for an NP-
complete problem. What would you do?

-Another $5,000,000 from the Clay Math Institute

-Put mathematicians out of work.

-Decrypt (essentially) all current internet communication. 

-No more secure online shopping or online banking or online 
messaging…or online anything.

A world where P=NP is a very very different place from the world we 
live in now.
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Why Should You Care if P≠NP?

We already expect P≠NP. Why should you care when we finally prove it?

P≠NP says something fundamental about the universe.

For some questions there is not a clever way to find the right answer

-Even though you’ll know it when you see it.

There is actually a way to obscure information, so it cannot be found 
quickly no matter how clever you are.
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Why Should You Care if P≠NP?

To prove P≠NP we need to better understand the differences between 
problems. 

-Why do some problems allow easy solutions and others don’t?

-What is the structure of these problems?

We don’t care about P vs NP just because it has a huge effect about 
what the world looks like.

We will learn a lot about computation along the way.
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