
Lecture 19: Disjoint Sets CSE 373 Data Structures &
Algorithms

A new ADT

We need a new ADT!

CSE 373 SU 19 - ROBBIE WEBER 2

Disjoint-Sets (aka Union-Find) ADT

makeSet(value) – creates a new set where the only member is the
value. Picks a name

state

behavior

Family of Sets
- sets are disjoint: No element appears in more than one set
- No required order (neither within sets, nor between sets)
- Each set has a name (usually one of its elements)

findSet(value) – looks up the name of the set containing value,
returns the name of that set

union(x, y) – looks up set containing x and set containing y, combines
two sets into one. All of the values of one set are added to the other,
and the now empty set goes away. Chooses a name for combined set

A better idea
Here’s a better idea:

We need to be able to combine things easily.
- Pointer based data structures are better at that.

But given a value, we need to be able to find the right set.
- Sounds like we need a dictionary somewhere

And we need to be able to find a certain element (“the representative”) within a set quickly.
- Trees are good at that (better than linked lists at least)

CSE 373 SU 19 - ROBBIE WEBER 3

The Real Implementation

CSE 373 SU 19 - ROBBIE WEBER 4

UpTreeDisjointSet<E>

makeSet(x)-create a new
tree of size 1 and add to
our forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with
x and moves up tree to find
root

union(x, y)-append tree
with y as a child of tree
with x

Disjoint-Set ADT

makeSet(x) – creates a new set within the

disjoint set where the only member is x.

Picks representative for set

Count of Sets

state

behavior

Set of Sets

- Disjoint: Elements must be unique

across sets

- No required order

- Each set has representative

findSet(x) – looks up the set containing

element x, returns representative of that

set

union(x, y) – looks up set containing x and

set containing y, combines two sets into

one. Picks new representative for resulting

set

Dictionary<NodeValues,
NodeLocations> nodeInventory

TreeSet<E>

TreeSet(x)

state

behavior
SetNode overallRoot

add(x)

remove(x, y)
getRep()-returns data of
overallRoot

SetNode<E>

SetNode(x)

state

behavior

E data

addChild(x)

removeChild(x, y)

Collection<SetNode>
children

Implement makeSet(x)

Worst case runtime? Just like with graphs, we’re going to assume we have control over the
dictionary keys and just say we’ll always have Θ(1) dictionary behavior.

%(1)
CSE 373 SU 19 - ROBBIE WEBER 5

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root
union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

0 1 2 3 4 5

forest

0 1 2 3 4 5

makeSet(0)

makeSet(1)

makeSet(2)

makeSet(3)

makeSet(4)

makeSet(5)

Implement union(x, y)

CSE 373 SU 19 - ROBBIE WEBER 6

union(3, 5) 0 1 2 3 4 5

forest

0 1 2 3 4 5
-> -> -> -> -> ->

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root
union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

Implement union(x, y)

CSE 373 SU 19 - ROBBIE WEBER 7

union(3, 5)

union(2, 1)

0 1 2 3 4

5

forest

0 1 2 3 4 5
-> -> -> -> -> ->

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root
union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

Implement union(x, y)

CSE 373 SU 19 - ROBBIE WEBER 8

union(3, 5)

union(2, 1)

union(2, 5)

0 2 3 4

5

forest

0 1 2 3 4 5
-> -> -> -> -> ->

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root
union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

1

Implement union(x, y)

CSE 373 SU 19 - ROBBIE WEBER 9

union(3, 5)

union(2, 1)

union(2, 5)

0 2

3

4

5

forest

0 1 2 3 4 5

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root
union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

1

Implement findSet(x)

CSE 373 SU 19 - ROBBIE WEBER 10

findSet(0)

findSet(3)

findSet(5)

0 2

3

4

5

forest

0 1 2 3 4 5

1

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root
union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

Worst case runtime of findSet?

!(#)
Worst case runtime of union?

!(#) – union has to call find!

Improving union
Problem: Trees can be unbalanced

Solution: Union-by-rank!
- rank is a lot like height (it’s not quite height, for reasons we’ll see soon)
- Keep track of rank of all trees
- makeSet creates a tree of rank 0.
- When unioning make the tree with larger rank the root. New rank is larger of two merged ranks.
- If it’s a tie, pick one to be root arbitrarily and increase rank by one.

CSE 373 SU 19 - ROBBIE WEBER 11

2

3

5

1

4

rank = 0 rank = 2

0 4

rank = 0 rank = 0rank = 1

Practice
Given the following disjoint-set what would be the result of the following calls on union if we add
the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for
each tree.

CSE 373 SU 19 - ROBBIE WEBER
12

6

4

5

0

rank = 2

3

1

2

rank = 0

8

10

12

9

rank = 2

11

7

13

rank = 1

union(2, 13)
union(4, 12)
union(2, 8)

Practice
Given the following disjoint-set what would be the result of the following calls on union if we add
the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for
each tree.

CSE 373 SU 19 - ROBBIE WEBER
13

6

4

5

0

rank = 2

3

1

2

rank = 0

8

10

12

9

rank = 2

11

7

13

rank = 1

union(2, 13)

Practice
Given the following disjoint-set what would be the result of the following calls on union if we add
the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for
each tree.

CSE 373 SU 19 - ROBBIE WEBER
14

6

4

5

0

rank = 2

3

1

2

8

10

12

9

rank = 2

11

7

13

rank = 1

union(2, 13)

union(4, 12)

Practice
Given the following disjoint-set what would be the result of the following calls on union if we add
the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for
each tree.

CSE 373 SU 19 - ROBBIE WEBER
15

6

4

5

0 3

1

2

8

10

12

9

rank = 3

11

7

13

rank = 1

union(2, 13)

union(4, 12)

union(2, 8)

Practice
Given the following disjoint-set what would be the result of the following calls on union if we add
the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for
each tree.

CSE 373 SU 19 - ROBBIE WEBER
16

8

10

12

9

rank = 3

11

union(2, 13)
union(4, 12)
union(2, 8)

6

4

5

0 3

1

2

7

13

Does this improve the worst case runtimes?

findSet is Θ(log(&)) now, not Θ(&)!

Improving findSet()
Problem: Every time we call findSet() you must traverse all the levels of the tree to find
representative

Solution: Path Compression
- Collapse tree into fewer levels by updating parent pointer of each node you visit
- Whenever you call findSet() update each node you touch’s parent pointer to point directly to overallRoot

CSE 373 SU 19 - ROBBIE WEBER 17

8

10

12

9 116

4

5

3 2

7

13

rank = 3

findSet(5)
findSet(4)

8

10

12

9 11645

3 2

7

13

rank = 3

Does this improve the
worst case runtimes?

Not the worst-case,
but…in-practice it makes
a big difference.

Example
Using the union-by-rank and path-compression optimized implementations of disjoint-sets draw
the resulting forest caused by these calls:
1.makeSet(a)

2.makeSet(b)
3.makeSet(c)
4.makeSet(d)

5.makeSet(e)
6.makeSet(f)

7.makeSet(g)
8.makeSet(h)

9.union(c, e)
10.union(d, e)
11.union(a, c)

12.union(g, h)
13.union(b, f)

14.union(g, f)
15.union(b, c)

16.union(g, a)

CSE 373 SU 19 - ROBBIE WEBER 18

Example
Using the union-by-rank and path-compression optimized implementations of disjoint-sets draw
the resulting forest caused by these calls:
1.makeSet(a)

2.makeSet(b)
3.makeSet(c)
4.makeSet(d)

5.makeSet(e)
6.makeSet(f)

7.makeSet(g)
8.makeSet(h)

9.union(c, e)
10.union(d, e)
11.union(a, c)

12.union(g, h)
13.union(b, f)

14.union(g, f)
15.union(b, c)

16.union(g, a)

CSE 373 SU 19 - ROBBIE WEBER 19

f

cb

rank = 2

d

g

a

eh b

Subtleties of Path Compression
Path compression is an optimization written into the findSet code.

It does not appear directly in the union code.
- It’s not worth it; you’d have to rewrite the entire findSet code inside union to make it

happen.

But union does make two findSet calls,
- So path compression will happen when you do a union call, just indirectly.

Optimized Up-trees Runtimes

CSE 373 SU 19 - ROBBIE WEBER 21

makeSet findSet Union
Worst-Case Θ(1) Θ(log () Θ(log ()
Best-Case Θ(1) Θ(1) Θ(1)
In-Practice Θ(1))(log∗ ())(log∗ ()

Hey why are some of those)() not Θ()?
And…wait what’s that * above the log?

log∗ %
log∗(%) is the “iterated logarithm”

It answers the question “how many times do I have to take the log of this to get a number at
most 1?”

E.g. log∗(16) = 3
log 16 = 4 log 4 = 2 log 2 = 1.
log∗ % grows ridiculously slowly.

log∗ 1001 = 5.
1001 is the number of atoms in the observable universe. For all practical purposes these
operations are constant time.
But they aren’t 3(1).

CSE 373 SU 19 - ROBBIE WEBER 22

Optimized Up-tree Runtimes
log∗ % isn’t tight – that’s why those Θ() bounds became)() bounds.

There is a tight bound. It’s a function that grows even slower than log∗ %
- Google “inverse Ackerman function“

CSE 373 SU 19 - ROBBIE WEBER 23

Kruskal’s Algorithm

KruskalMST(Graph G)
initialize each vertex to be its own component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
}

CSE 373 SU 19 - ROBBIE WEBER 24

What’s the running time of Kruskal’s?

KruskalMST(Graph G)
initialize new DisjointSets DS
for(v : G.vertices) { DS.makeSet(v) }
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(DS.findSet(u) != DS.findSet(v)){
add (u,v) to the MST
DS.union(u,v)

}
}

Θ(# log#)
Θ(()

calls, do we have to worry about
the log (worst case?

(calls, do we have to worry about
the log (worst case?

Intuition: We could make the log (running time happen once…but not really more than that.
Since we’re counting total operations, we’re actually going to see the “in-practice” behavior

For MST algorithms, assume that # dominates (
(if it doesn’t, there is no spanning tree to find)

Whether we hit worst-case or not: Θ(# log#) is dominating term.

Running Time Notes
Intuition: We could make the bad case happen once…but not really more than that.

Since we’re counting total operations, we’re actually going to see “in-practice” behavior

This kind of statement is “amortized analysis”
- It’s also the math behind why we always double the size of array-based data structures.

Some people write the running time as Θ(# log ') instead of Θ(# log#)
They’re assuming the graph doesn’t have any multi-edges.
- I.e. there’s at most one edge between any pair of vertices.

And they just think Θ(# log ') looks better (even though it’s just a constant factor)

