s v A .
R
N G
e

o IR

PN

RO TG

" CSE 373 Data Structures &
Lecture 19: Disjoint Sets | 2

A new ADT

We need a new ADT! state

Family of Sets

- sets are disjoint: No element appears in more than one set
- No required order (neither within sets, nor between sets)

- Each set has a name (usually one of its elements)

behavior
makeSet(value) — creates a new set where the only member is the

value. Picks a name
findSet(value) — looks up the name of the set containing value,
returns the name of that set

union(x, y) — looks up set containing x and set containing y, combines
two sets into one. All of the values of one set are added to the other,
and the now empty set goes away. Chooses a name for combined set

CSE 373 SU 19 - ROBBIE WEBER

A better idea

Here’s a better idea:

We need to be able to combine things easily.
Pointer based data structures are better at that.

But given a value, we need to be able to find the right set.
Sounds like we need a dictionary somewhere

And we need to be able to find a certain element (“the representative”) within a set quickly.
Trees are good at that (better than linked lists at least)

CSE 373 SU 19 - ROBBIE WEBER

The Real Implementation

state

Set of Sets
- Disjoint: Elements must be unique

across sets
- No required order
- Each set has representative

Count of Sets
behavior

makeSet(x) — creates a new set within the
disjoint set where the only member is x.
Picks representative for set

findSet(x) — looks up the set containing
element x, returns representative of that

set

union(x, y) — looks up set containing x and
set containing y, combines two sets into
one. Picks new representative for resulting
set

UpTreeDisjointSet<E>

Collection<TreeSet> forest

Dictionary<NodeValues,
NodeLocations> nodelInventory

makeSet (x) -create a new
tree of size 1 and add to
our forest

findSet (x) -locates node with
X and moves up tree to find
root

union (x, y)-append tree
with yv as a child of tree
with x

TreeSet<E>

SetNode overallRoot

TreeSet (x)
add (x)

remove (x, V)
getRep () -returns data of
overallRoot

SetNode<E>

E data

Collection<SetNode>
children

SetNode (x)
addChild (x)

removeChild(x, V)

CSE 373 SU 19 - ROBBIE WEBER

TreeDisjointSet<E>

Implement makeSet(x)

Dictionary<NodeValues,
forest NodeLocations> nodeInventory

makeSet (0) 0 1 2 3 4 5 makeSet (x) -create a new tree
of size 1 and add to our
makeSet (1) forest

findSet (x) -locates node with x
and moves up tree to find root

makeSet (2)

union(x, y)-append tree with y
as a child of tree with x

makeSet (3)

makeSet (4)

makeSet (5) 0 1 2 3

S
()

Worst case runtime? Just like with graphs, we’re going to assume we have control over the
dictionary keys and just say we’ll always have ©(1) dictionary behavior.

0(1)

CSE 373 SU 19 - ROBBIE WEBER 5

Implement union(x, y)

union (3,

S)

forest

©) ©) o) @ © ¢

TreeDisjointSet<E>

Collection<TreeSet> forest

Dictionary<NodeValues,
NodeLocations> nodeInventory

makeSet (x) —create a new tree
of size 1 and add to our
forest

findSet (x) -locates node with x
and moves up tree to find root
union (x, y)-append tree with y
as a child of tree with x

CSE 373 SU 19 - ROBBIE WEBER 6

Implement union(x, y)

union (3,

union (2,

S)

1)

forest

) (@) [

TreeDisjointSet<E>

Collection<TreeSet> forest

Dictionary<NodeValues,
NodeLocations> nodeInventory

makeSet (x) —create a new tree
of size 1 and add to our
forest

findSet (x) -locates node with x
and moves up tree to find root
union (x, y)-append tree with y
as a child of tree with x

CSE 373 SU 19 - ROBBIE WEBER 7

TreeDisjointSet<E>

Implement union(x, y)

Collection<TreeSet> forest
Dictionary<NodeValues,

fO reSt NodeLocations> nodelInventory
))
union (3, 5) 2 3 makeSet (x) —create a new tree
of size 1 and add to our
union (2, 1) forest
findSet (x) -locates node with x
union (2 5) 1 5 and moves up tree to find root
! union(x, y)-append tree with y

as a child of tree with x

CSE 373 SU 19 - ROBBIE WEBER 8

Implement union(x, y)

forest
)
union (3, 5) 0 2
union (2, 1)
union (2, 5)) ¢
5

TreeDisjointSet<E>

Collection<TreeSet> forest

Dictionary<NodeValues,
NodeLocations> nodeInventory

makeSet (x) —create a new tree
of size 1 and add to our
forest

findSet (x) -locates node with x
and moves up tree to find root
union (x, y)-append tree with y
as a child of tree with x

O 1 2 3 4 5

CSE 373 SU 19 - ROBBIE WEBER 9

TreeDisjointSet<E>

Implement findSet(x)

Dictionary<NodeValues,

forest NodeLocations> nodeInventory
)
findSet (0) 0 2 4 makeSet (x) —create a new tree
y of size 1 and add to our
findSet (3) \ forest
findSet (x) -locates node with x
1 3 and moves up tree to find root

findSet (5)

union(x, y)-append tree with y
as a child of tree with x

Worst case runtime of findSet?

0(n) | /

Worst case runtime of union?

—S—
=
N
W
H
L

—

®(n) — union has to call find!

CSE 373 SU 19 - ROBBIE WEBER 10

Improving union
Trees can be unbalanced

rank is a lot like height (it’s not quite height, for reasons we’ll see soon)

Keep track of rank of all trees

makeSet creates a tree of rank O.

When unioning make the tree with larger rank the root. New rank is larger of two merged ranks.

If it’s a tie, pick one to be root arbitrarily and increase rank by one.
rank =0 rank = 2 rank =0 rank = 1

G @k

CSE 373 SU 19 - ROBBIE WEBER 11

Practice

Given the following disjoint-set what would be the result of the following calls on union if we add

the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for
each tree.

rank = 2

rank =0

-

2

~

rank = 2

-

8

~

10

11

rank = 1

-

7

13

~

1 5 12

union (2, 13)
union (4, 12)

union (2, 8)

12
CSE 373 SU 19 - ROBBIE WEBER

Practice

Given the following disjoint-set what would be the result of the following calls on union if we add

the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for
each tree.

rank = 2 rank =0 rank = 2 rank =1
4 A 4 <) 4 S0) 4 S)
-~ \ Y, \ ® \ Y,

union (2, 13)

13
CSE 373 SU 19 - ROBBIE WEBER

Practice

Given the following disjoint-set what would be the result of the following calls on union if we add

the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for
each tree.

rank = 2

rank = 2

-

8

~

10

11

rank = 1

-

7

13 2

~

1 5 12

union (2, 13)

union (4, 12)

14
CSE 373 SU 19 - ROBBIE WEBER

Practice

Given the following disjoint-set what would be the result of the following calls on union if we add

the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for
each tree.

rank =3 rank = 1

e (a0

union (2, 13)

union (4, 12) \\‘ ,//

union (2, 8)

15
CSE 373 SU 19 - ROBBIE WEBER

Practice

Given the following disjoint-set what would be the result of the following calls on union if we add

the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for
each tree.

rank = 3
a ; N
6 9 10) (11 7
0 2) (3 12 13 2

union (2, 13) \\i : 4//

union (4, 12)

union (2, 8)

Does this improve the worst case runtimes?

findSet is ®(log(n)) now, not O(n)!

CSE 373 SU 19 - ROBBIE WEBER

16

Improving findSet()

Every time we call findSet() you must traverse all the levels of the tree to find

representative

Collapse tree into fewer levels by updating parent pointer of each node you visit

Whenever you call findSet() update each node you touch’s parent pointer to point directly to overallRoot

findSet (5)
findSet (4)

Does this improve the
worst case runtimes?

Not the worst-case,
but...in-practice it makes
a big difference.

rank = 3

-

8
A
b

6) .--{9) (10 (11

~

13 2

rank =3

-

8

10 11 7

12 13 2

/

CSE 373 SU 19 - ROBBIE WEBER

17

Example

Using the union-by-rank and path-compression optimized implementations of disjoint-sets draw
the resulting forest caused by these calls:

makeSet (a
b
C

d

makeSet
makeSet
makeSet
makeSet
makeSet
makeSet (g

makeSet (h

(a)
(b)
(c)
(d)
(e)
(£)
(9)
(h)

union(c, e)
union (d, e)
union(a, c¢)

union (g, h)

union (b, f)

union (g, f)

()
()

union (b, c¢
union (g, a

CSE 373 SU 19 - ROBBIE WEBER 18

Example

Using the union-by-rank and path-compression optimized implementations of disjoint-sets draw
the resulting forest caused by these calls:

makeSet (a
b
C

d

rank = 2

makeSet

makeSet
makeSet
makeSet
makeSet

makeSet (g

makeSet (h

(a)
(b)
(c)
(d)
(e)
(£)
(9)
(h)

union(c, e

)
union(d, e

union(a, c

union (g, h

)

()
()
union (b, f)
union (g, f)
()

()

union (b, c¢
union (g, a

CSE 373 SU 19 - ROBBIE WEBER 19

Subtleties of Path Compression

Path compression is an optimization written into the findSet code.

It does not appear directly in the union code.

It’s not worth it; you’d have to rewrite the entire findSet code inside union to make it
happen.

But union does make two findSet calls,
So path compression will happen when you do a union call, just indirectly.

Optimized Up-trees Runtimes

Worst-Case O(1) O(logn) O(logn)
Best-Case O(1) 0(1) 0(1)
In-Practice O(1) O(log* n) O(log*n)

Hey why are some of those O() not ©()?
And...wait what’s that * above the log?

CSE 373 SU 19 - ROBBIE WEBER 21

log*(n)

log™(n) is the “iterated logarithm”

It answers the question “how many times do | have to take the log of this to get a number at
most 1?”

E.g.log"(16) =3

log(16) = 4 log(4) = 2 log(2) = 1.
log™ n grows ridiculously slowly.

log*(108°%) = 5.

108Y is the number of atoms in the observable universe. For all practical purposes these
operations are constant time.

But they aren’t O(1).

CSE 373 SU 19 - ROBBIE WEBER 22

Optimized Up-tree Runtimes

log™ n isn’t tight — that’s why those ®() bounds became O() bounds.

There is a tight bound. It’s a function that grows even slower than log™ n
Google “inverse Ackerman function”

CSE 373 SU 19 - ROBBIE WEBER 23

Kruskal’s Algorithm

KruskalMST (Graph G)
initialize each vertex to be 1ts own component
sort the edges by weight
foreach (edge (u, v) 1n sorted order) {
1f(u and v are 1n different components) {
add (u,v) to the MST
Update u and v to be 1n the same component

CSE 373 SU 19 - ROBBIE WEBER 24

What’s the running time of Kruskal’s?

For MST algorithms, assume that m dominates n

KruskalMST (Graph G) (if it doesn’t, there is no spanning tree to find)
initialize new DisjointSets DS
for(v : G.vertices) { DS.makeSet(v) } o(n)

sort the edges by weight | o@mlogm)
foreach (edge (u, v) 1n sorted order) {

1f (DS.findSet(u) '= DS.findSet (v)) { | mcalls, do we have to worry about
add (u,v) to the MST the logn worst case?
DS .union (u,v)|ncalls, do we have to worry about

) the log n worst case?

} Intuition: We could make the log n running time happen once...but not really more than that.
Since we’re counting total operations, we’re actually going to see the “in-practice” behavior

Whether we hit worst-case or not: ®(mlogm) is dominating term.

Running Time Notes

Intuition: We could make the bad case happen once...but not really more than that.

Since we’re counting total operations, we’re actually going to see “in-practice” behavior

This kind of statement is “amortized analysis”
It’s also the math behind why we always double the size of array-based data structures.

Some people write the running time as ®(mlogn) instead of @(m logm)

They’re assuming the graph doesn’t have any multi-edges.
l.e. there’s at most one edge between any pair of vertices.

And they just think @ (m logn) looks better (even though it’s just a constant factor)

