
Lecture 23: Minimum 
Spanning Trees

CSE 373: Data Structures and 

Algorithms
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Administriva

Midterm solutions are on the exams section of the webpage.

Project 3 is due today

Proejct 4 (the last project) out soon (probably sometime tomorrow)
- The last project!

- Due Monday the 19th

Exercise 4 due Friday.
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Dijkstra’s Runtime
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Dijkstra(Graph G, Vertex source) 

for (Vertex v : G.getVertices()) { v.dist = INFINITY; }

G.getVertex(source).dist = 0;

initialize MPQ as a Min Priority Queue, add source

while(MPQ is not empty){

u = MPQ.removeMin();

for (Edge e : u.getEdges(u)){

oldDist = v.dist; newDist = u.dist+weight(u,v) 

if(newDist < oldDist){

v.dist = newDist

v.predecessor = u          

if(oldDist == INFINITY) { MPQ.insert(v) }

else { MPQ.updatePriority(v, newDist) }

}

}

}

+logV

+logV

This actually doesn’t run 𝑚 times 

for every iteration of the outer 

loop. It actually will run 𝑚 times 

in total; if every vertex is only 

removed from the priority queue 

(processed) once, then we 

examine each edge once. Each 

line inside this foreach gets 

multiplied by a single E instead of 

E * V.

𝚯-Bound = 𝚯(n log n + m log n)

Just like when we analyzed BFS, 

don’t just work inside out; try to 

figure out how many times each 

line will be executed.



Dijkstra’s Wrap-up

The details of the implementation depend on what data structures you have available.

Your implementation in the programming project will be different in a few spots.

Our running time is Θ(𝐸 log 𝑉 + 𝑉 log 𝑉) i.e. Θ(𝑚 log 𝑛 + 𝑛 log 𝑛) .
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Dijkstra’s Wrap-up

The details of the implementation depend on what data structures you have available.

Your implementation in the programming project will be different in a few spots.

Our running time is Θ(𝐸 log 𝑉 + 𝑉 log 𝑉) i.e. Θ(𝑚 log 𝑛 + 𝑛 log 𝑛) .

If you go to Wikipedia right now, they say it’s 𝑂(𝐸 + 𝑉 log 𝑉)

They’re using a Fibonacci heap instead of a binary heap.

Θ(𝐸 log 𝑉 + 𝑉 log 𝑉) is the right running time for this class.

Shortest path summary:
- BFS works great (and fast -- Θ(𝑚 + 𝑛) time) if graph is unweighted.

- Dijkstra’s works for weighted graphs with no negative edges, but a bit slower Θ(𝑚 log𝑛 + 𝑛 log𝑛)

- Reductions!
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Minimum Spanning Trees
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Minimum Spanning Trees

It’s the 1920’s. Your friend at the electric company needs to choose 
where to build wires to connect all these cities to the plant. 
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She knows how much it would cost to lay electric wires between any 

pair of cities, and wants the cheapest way to make sure electricity from 

the plant to every city.
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Minimum Spanning Trees

It’s the 1920’s. Your friend at the electric company needs to choose 
where to build wires to connect all these cities to the plant. 
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She knows how much it would cost to lay electric wires between any 

pair of locations, and wants the cheapest way to make sure 

electricity from the plant to every city.

1950’s

phones to each other.

phone

Everyone can call everyone else.

boss phone
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Minimum Spanning Trees

It’s the 1920’s. Your friend at the electric company needs to choose 
where to build wires to connect all these cities to the plant. 
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She knows how much it would cost to lay electric wires between any 

pair of locations, and wants the cheapest way to make sure

today ISP

cable

Everyone can reach the server

the Internet.
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Minimum Spanning Trees

What do we need? A set of edges such that:
- Every vertex touches at least one of the edges. (the edges span the graph)

- The graph on just those edges is connected.

- The minimum weight set of edges that meet those conditions.

Assume all edge weights are positive.

Claim: The set of edges we pick never has a cycle. Why?

MST is the exact number of edges to connect all vertices
- taking away 1 edge breaks connectiveness 

- adding 1 edge makes a cycle

- contains exactly V – 1 edges

11

Notice we do not need a directed graph!
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Aside: Trees 

Our BSTs had:
- A root

- Left and/or right children 

- Connected and no cycles

Our heaps had:
- A root

- Varying numbers of children

- Connected and no cycles

On graphs our tees:
- Don’t need a root (the vertices aren’t ordered, and we can start BFS from anywhere)

- Varying numbers of children

- Connected and no cycles

12

An undirected, connected acyclic graph.

Tree (when talking about graphs)
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MST Problem

What do we need? A set of edges such that:
- Every vertex touches at least one of the edges. (the edges span the graph)

- The graph on just those edges is connected.

- The minimum weight set of edges that meet those conditions.

Our goal is a tree!

13

Given: an undirected, weighted graph G

Find: A minimum-weight set of edges such that you 

can get from any vertex of G to any other on only 

those edges.

Minimum Spanning Tree Problem
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Example

Try to find an MST of this graph
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Finding an MST

Here are two ideas for finding an MST:

Think vertex-by-vertex
-Maintain a tree over a set of vertices

-Have each vertex remember the cheapest edge that could connect it to that set.

-At every step, connect the vertex that can be connected the cheapest.

Think edge-by-edge
-Sort edges by weight. In increasing order:

-add it if it connects new things to each other (don’t add it if it would create a 
cycle)

Both ideas work!!

pollEV.com/cse373su19

Which of these sounds 
like more likely to work?
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Kruskal’s Algorithm

Let’s start with the edge-by-edge version.

We’ll need one more vocab word:

A connected component (or just “component”) is a “piece” of an undirected graph.
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A set 𝑆 of vertices is a connected component (of an undirected graph) if:

1. It is connected, i.e. for all vertices 𝑢, 𝑣 in 𝑆: there is a walk from 𝑢 to 𝑣
2. It is maximal:

- Either it’s the entire set of vertices, or

- For every vertex u that’s not in S, 𝑆 ∪ {𝑢} is not connected.

Connected component



Find the connected components
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Kruskal’s Algorithm

KruskalMST(Graph G) 

initialize each vertex to be its own component

sort the edges by weight

foreach(edge (u, v) in sorted order){

if(u and v are in different components){

add (u,v) to the MST

Update u and v to be in the same component

}

}
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Try It Out
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KruskalMST(Graph G) 

initialize each vertex to be its own component

sort the edges by weight

foreach(edge (u, v) in sorted order){

if(u and v are in different components){

add (u,v) to the MST

Update u and v to be in the same component

}

}

Edge Include? Reason

(A,C)

(C,E)

(A,B)

(A,D)

(C,D)

Edge (cont.) Inc? Reason

(B,F)

(D,E)

(D,F)

(E,F)

(C,F)
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Try It Out
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KruskalMST(Graph G) 

initialize each vertex to be its own component

sort the edges by weight

foreach(edge (u, v) in sorted order){

if(u and v are in different components){

add (u,v) to the MST

Update u and v to be in the same component

}

}

Edge Include? Reason

(A,C) Yes

(C,E) Yes

(A,B) Yes

(A,D) Yes

(C,D) No Cycle A,C,D,A

Edge (cont.) Inc? Reason

(B,F) Yes

(D,E) No Cycle A,C,E,D,A

(D,F) No Cycle A,D,F,B,A

(E,F) No Cycle A,C,E,F,D,A

(C,F) No Cycle C,A,B,F,C
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Kruskal’s Implementation

Some lines of code there were a little sketchy. 

> initialize each vertex to be its own component

> Update u and v to be in the same component

Last time we solved sketchy lines of code with a data structure.

Can we use one of our data structures?
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A new ADT

We need a new ADT!
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Disjoint-Sets (aka Union-Find) ADT

makeSet(value) – creates a new set where the only member is the 

value. Picks value as the representative

state

behavior

Family of Sets

- sets are disjoint: No element appears in more than one set

- No required order (neither within sets, nor between sets)

- Each set has a representative (use one of its members as a 

name)

findSet(value) – looks up the representative of the set 

containing value, returns the representative of that set

union(x, y) – looks up set containing x and set containing y, 

combines two sets into one.  All of the values of one set are added 

to the other, and the now empty set goes away. Chooses a 

representative for combined set.



Disjoint sets implementation

There’s only one common implementation of the Disjoint sets/Union-find ADT.

We’ll call it “forest of up-trees” or just “up-trees”

It’s very common to conflate the ADT with the data structure
- Because the standard implementation is basically the “only one” 

- Don’t conflate them!

We’re going to slowly design/optimize the implementation over the next lecture-plus.

It’ll take us a while, but it’ll be a great review of some key ideas we’ve learned this quarter.
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Implementing Union-Find
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Implementing Disjoint-Sets with Dictionaries
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Approach 1: dictionary of value -> set ID/representative Approach 2: dictionary of ID/representative of set 

-> all the values in that set

Matt

Zach

Velocity

1

2

1

1

2 Zach

Velocity, Matt

Let’s start with a not-great implementation to see why we really need a new data 

structure.



Exercise (2 mins)

Calculate the worst case Big-Θ runtimes for each of the methods (makeSet, findSet, union) 
for both approaches.
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Approach 1: dictionary of value -> set 

ID/representative

Approach 2: dictionary of 

ID/representative of set 

-> all the values in that set

Matt

Zach

Velocity

1

2

1

1

2 Zach

Velocity, Matt
approach 1 approach 

2

makeSet(value) Θ(1) Θ(1)

findSet(value) Θ(1) Θ(𝑛)

union(valueA, 

valueB)

Θ(𝑛) Θ(𝑛)



A better idea

Here’s a better idea:

We need to be able to combine things easily. 
- Pointer based data structures are better at that. 

But given a value, we need to be able to find the right set.
- Sounds like we need a dictionary somewhere

And we need to be able to find a certain element (“the representative”) within a set quickly.
- Trees are good at that (better than linked lists at least)
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The Real Implementation
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UpTreeDisjointSet<E>

makeSet(x)-create a new 

tree of size 1 and add to 

our forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with 

x and moves up tree to find 

root

union(x, y)-append tree 

with y as a child of tree 

with x 

Disjoint-Set ADT

makeSet(x) – creates a new set within 

the disjoint set where the only member 

is x. Picks representative for set

Count of Sets

state

behavior

Set of Sets

- Disjoint: Elements must be unique 

across sets

- No required order

- Each set has representative

findSet(x) – looks up the set containing 

element x, returns representative of 

that set

union(x, y) – looks up set containing x 

and set containing y, combines two sets 

into one. Picks new representative for 

resulting set

Dictionary<NodeValues, 

NodeLocations> nodeInventory

TreeSet<E>

TreeSet(x)

state

behavior

SetNode overallRoot

add(x)

remove(x, y)

getRep()-returns data of 

overallRoot

SetNode<E>

SetNode(x)

state

behavior

E data

addChild(x)

removeChild(x, y)

Collection<SetNode> 

children



Implement makeSet(x)

Worst case runtime? Just like with graphs, we’re going to assume we have control over the 
dictionary keys and just say we’ll always have Θ(1) dictionary behavior.

𝑂(1)
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TreeDisjointSet<E>

makeSet(x)-create a new tree 

of size 1 and add to our 

forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x 

and moves up tree to find root

union(x, y)-append tree with y 

as a child of tree with x 

Dictionary<NodeValues, 

NodeLocations> nodeInventory

0 1 2 3 4 5

forest

0 1 2 3 4 5

makeSet(0)

makeSet(1)

makeSet(2)

makeSet(3)

makeSet(4)

makeSet(5)



Implement union(x, y)
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union(3, 5) 0 1 2 3 4 5

forest

0 1 2 3 4 5

-> -> -> -> -> ->

TreeDisjointSet<E>

makeSet(x)-create a new tree 

of size 1 and add to our 

forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x 

and moves up tree to find root

union(x, y)-append tree with y 

as a child of tree with x 

Dictionary<NodeValues, 

NodeLocations> nodeInventory



Implement union(x, y)
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union(3, 5)

union(2, 1)

0 1 2 3 4

5

forest

0 1 2 3 4 5

-> -> -> -> -> ->

TreeDisjointSet<E>

makeSet(x)-create a new tree 

of size 1 and add to our 

forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x 

and moves up tree to find root

union(x, y)-append tree with y 

as a child of tree with x 

Dictionary<NodeValues, 

NodeLocations> nodeInventory



Implement union(x, y)
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union(3, 5)

union(2, 1)

union(2, 5)

0 2 3 4

5

forest

0 1 2 3 4 5

-> -> -> -> -> ->

TreeDisjointSet<E>

makeSet(x)-create a new tree 

of size 1 and add to our 

forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x 

and moves up tree to find root

union(x, y)-append tree with y 

as a child of tree with x 

Dictionary<NodeValues, 

NodeLocations> nodeInventory

1



Implement union(x, y)
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union(3, 5)

union(2, 1)

union(2, 5)

0 2

3

4

5

forest

0 1 2 3 4 5

TreeDisjointSet<E>

makeSet(x)-create a new tree 

of size 1 and add to our 

forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x 

and moves up tree to find root

union(x, y)-append tree with y 

as a child of tree with x 

Dictionary<NodeValues, 

NodeLocations> nodeInventory

1



Implement findSet(x)
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findSet(0)

findSet(3)

findSet(5)

0 2

3

4

5

forest

0 1 2 3 4 5

1

TreeDisjointSet<E>

makeSet(x)-create a new tree 

of size 1 and add to our 

forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x 

and moves up tree to find root

union(x, y)-append tree with y 

as a child of tree with x 

Dictionary<NodeValues, 

NodeLocations> nodeInventory

Worst case runtime of findSet?

𝚯(𝒏)

Worst case runtime of union?

𝚯(𝒏) – union has to call find!



Improving union

Problem: Trees can be unbalanced

Solution: Union-by-rank!
- rank is a lot like height (it’s not quite height, for reasons we’ll see tomorrow)

- Keep track of rank of all trees

- makeSet creates a tree of rank 0.

- When unioning make the tree with larger rank the root. New rank is larger of two merged ranks.

- If it’s a tie, pick one to be root arbitrarily and increase rank by one.
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Practice
Given the following disjoint-set what would be the result of the following calls on union if 
we add the “union-by-rank” optimization. Draw the forest at each stage with corresponding 
ranks for each tree.
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Practice
Given the following disjoint-set what would be the result of the following calls on union if 
we add the “union-by-rank” optimization. Draw the forest at each stage with corresponding 
ranks for each tree.
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Practice
Given the following disjoint-set what would be the result of the following calls on union if 
we add the “union-by-rank” optimization. Draw the forest at each stage with corresponding 
ranks for each tree.

CSE 373 SU 19 - ROBBIE WEBER

38

6

4

5

0

rank = 2

3

1

2

8

10

12

9

rank = 2

11

7

13

rank = 1

union(2, 13)

union(4, 12)



Practice
Given the following disjoint-set what would be the result of the following calls on union if 
we add the “union-by-rank” optimization. Draw the forest at each stage with corresponding 
ranks for each tree.
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Practice
Given the following disjoint-set what would be the result of the following calls on union if 
we add the “union-by-rank” optimization. Draw the forest at each stage with corresponding 
ranks for each tree.
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Does this improve the worst case runtimes?

findSet is Θ(log(𝑛)) now, not Θ(𝑛)!



Improving findSet()

Problem: Every time we call findSet() you must traverse all the levels of the tree to find 
representative

Solution: Path Compression
- Collapse tree into fewer levels by updating parent pointer of each node you visit

- Whenever you call findSet() update each node you touch’s parent pointer to point directly to overallRoot
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findSet(5)

findSet(4)
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Does this improve the 
worst case runtimes?

Not the worst-case, but…



Example

Using the union-by-rank and path-compression optimized implementations of disjoint-sets 
draw the resulting forest caused by these calls:
1.makeSet(a)

2.makeSet(b)

3.makeSet(c)

4.makeSet(d)

5.makeSet(e)

6.makeSet(f)

7.makeSet(h)

8.union(c, e)

9.union(d, e)

10.union(a, c)

11.union(g, h)

12.union(b, f)

13.union(g, f)

14.union(b, c)
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Optimized Up-trees Runtimes
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makeSet findSet Union

Worst-Case Θ(1) Θ(log 𝑛) Θ(log 𝑛)

Best-Case Θ(1) Θ(1) Θ(1)

In-Practice Θ(1) 𝑂(log∗ 𝑛) 𝑂(log∗ 𝑛)

Hey why are some of those 𝑂() not Θ()?
And…wait what’s that * above the log?



log∗ 𝑛

log∗(𝑛) is the “iterated logarithm”

It answers the question “how many times do I have to take the log of this to get a number 
at most 1?”

E.g. log∗(16) = 3

log 16 = 4 log 4 = 2 log 2 = 1.

log∗ 𝑛 grows ridiculously slowly. 

log∗ 1080 = 5.

1080 is the number of atoms in the observable universe. For all practical purposes 
these operations are constant time.

But they aren’t 𝑂(1).
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Optimized Up-tree Runtimes

log∗ 𝑛 isn’t tight – that’s why those Θ() bounds became 𝑂() bounds. 

There is a tight bound. It’s a function that grows even slower than log∗ 𝑛
- Google “inverse Ackerman function“
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