
Lecture 17: Shortest
Paths

CSE 373: Data Structures and

Algorithms

CSE 373 19 SU - ROBBIE WEBER 1

Administrivia

Project 4 partner form due tonight.

Project 3 due Wednesday

Exercise 4 is out.

2CSE 373 19 SU - ROBBIE WEBER

Warm Up
Run Breadth First Search on this graph starting from s.

What order are vertices placed on the queue?

When processing a vertex insert neighbors in alphabetical order.

In a directed graph, BFS only follows an edge in the direction it points.

s t

v

u x

w

y

bfs(graph)

toVisit.enqueue(first vertex)

mark first vertex as seen

while(toVisit is not empty)

current = toVisit.dequeue()

for (V : current.outneighbors())

if (v is not seen)

mark v as visited

toVisit.enqueue(v)

CSE 373 19 SU - ROBBIE WEBER

pollEV.com/cse373su19

What order are vertices
placed on the queue?

Warm Up
Run Breadth First Search on this graph starting from s.

What order are vertices placed on the queue?

When processing a vertex insert neighbors in alphabetical order.

In a directed graph, BFS only follows an edge in the direction it points.

s t

v

u x

w

y

Correct order: s,u,v,y,x,w,t

bfs(graph)

toVisit.enqueue(first vertex)

mark first vertex as seen

while(toVisit is not empty)

current = toVisit.dequeue()

for (V : current.outneighbors())

if (v is not seen)

mark v as visited

toVisit.enqueue(v)

CSE 373 19 SU - ROBBIE WEBER

Shortest Paths

How does Google Maps figure out this is the fastest way to get to office hours?

CSE 373 19 SU - ROBBIE WEBER 5

Representing Maps as Graphs

How do we represent a map as a graph? What are the vertices and edges?

6CSE 373 19 SU - ROBBIE WEBER

Representing Maps as Graphs

7

K

R

D

P

H
S

4

1 2

2

4

3

5

CSE 373 19 SU - ROBBIE WEBER

Shortest Paths

8

The length of a path is the sum of the edge weights on that path.

Shortest Path Problem

Given: a directed graph G and vertices s and t

Find: the shortest path from s to t

s
w

y

u

t

v x

1 4

1

5

4
2 5

6

3

CSE 373 19 SU - ROBBIE WEBER

Unweighted graphs

Let’s start with a simpler version: the edges are all the same weight (unweighted)

If the graph is unweighted, how do we find a shortest paths?

9CSE 373 19 SU - ROBBIE WEBER

Unweighted Graphs

If the graph is unweighted, how do we find a shortest paths?

What’s the shortest path from s to s?
- Well….we’re already there.

What’s the shortest path from s to u or v?
- Just go on the edge from s

From s to w,x, or y?
- Can’t get there directly from s, if we want a length 2 path, have to go through u or v.

10

s t

v

u

y

w

x

CSE 373 19 SU - ROBBIE WEBER

Unweighted Graphs: Key Idea

To find the set of vertices at distance k, just find the set of vertices at distance k-1, and see if
any of them have an outgoing edge to an undiscovered vertex.

Do we already know an algorithm that does something like that?

Yes! BFS!

11

bfsShortestPaths(graph G, vertex source)

toVisit.enqueue(source)

mark source as seen

source.dist = 0

while(toVisit is not empty){

current = toVisit.dequeue()

for (v : current.outNeighbors())

{

if (v is not seen){

v.distance = current.distance + 1

v.predecessor = current

toVisit.enqueue(v)

mark v as seen

}

}

}
CSE 373 19 SU - ROBBIE WEBER

Unweighted Graphs

Use BFS to find shortest paths in this graph.

s t

v

u

y

w

x

CSE 373 19 SU - ROBBIE WEBER

bfsShortestPaths(graph G, vertex source)

toVisit.enqueue(source)

mark source as seen

source.dist = 0

while(toVisit is not empty){

current = toVisit.dequeue()

for (v : current.outNeighbors())

{

if (v is not seen){

v.distance = current.distance + 1

v.predecessor = current

toVisit.enqueue(v)

mark v as seen

}

}

}

Unweighted Graphs

13

s t

v

u

y

w

x

1

1

2

2

2

3

CSE 373 19 SU - ROBBIE WEBER

bfsShortestPaths(graph G, vertex source)

toVisit.enqueue(source)

mark source as seen

source.dist = 0

while(toVisit is not empty){

current = toVisit.dequeue()

for (v : current.outNeighbors())

{

if (v is not seen){

v.distance = current.distance + 1

v.predecessor = current

toVisit.enqueue(v)

mark v as seen

}

}

}

Use BFS to find shortest paths in this graph.

What about the target vertex?

14

Given: a directed graph G and vertices s,t

Find: the shortest path from s to t.

Shortest Path Problem

BFS didn’t mention a target vertex…

It actually finds the distance from s to every other vertex.

All our shortest path algorithms have this property.

If you only care about one target, you can sometimes stop early (in
bfsShortestPaths, when the target pops off the queue)

CSE 373 19 SU - ROBBIE WEBER

Weighted Graphs

Each edge should represent the “time” or “distance” from one vertex to another.

Sometimes those aren’t uniform, so we put a weight on each edge to record that
number.

The length of a path in a weighted graph is the sum of the weights along that path.

We’ll assume all of the weights are positive

-For GoogleMaps that definitely makes sense.

-Sometimes negative weights make sense. Today’s algorithm doesn’t work for those
graphs

-There are other algorithms that do work.

15CSE 373 19 SU - ROBBIE WEBER

Weighted Graphs: Take 1

BFS works if the graph is unweighted.

Maybe it just works for weighted graphs too?

s tv

w

u
1

20

1

1 1

x
1

CSE 373 19 SU - ROBBIE WEBER

Weighted Graphs: Take 1

BFS works if the graph is unweighted. Maybe it just works for weighted graphs too?

17

s
tv

w

u

What went wrong? When we found a shorter path from s to u, we needed to update the

distance to v (and anything whose shortest path went through u) but BFS doesn’t do that.

1

20

1

1 10

∞

∞ ∞ ∞

x

∞11

20 21

2

223

CSE 373 19 SU - ROBBIE WEBER

Weighted Graphs: Take 2

You already do this all the time.

In Project 2, you reduced implementing a hashset to implementing a
hashmap.

Any time you use a library, you’re reducing your problem to the one the
library solves.

Can we reduce finding shortest paths on weighted graphs to finding
them on unweighted graphs?

Using an algorithm for Problem B to solve Problem A.

Reduction (informally)

CSE 373 19 SU - ROBBIE WEBER

Weighted Graphs: Take 2

Given a weighted graph, how do we turn it into an unweighted one
without messing up the path lengths?

CSE 373 19 SU - ROBBIE WEBER

Weighted Graphs: A Reduction

s

u

v

t2

2

2

1

1

s

u

v

t

s

u

v
t 2

s

u

v
t2

2

2

1

1

2

Transform Input

Unweighted Shortest Paths

Transform Output

CSE 373 19 SU - ROBBIE WEBER

Weighted Graphs: A Reduction

What is the running time of
our reduction on this graph?

O(|V|+|E|) of the modified
graph, which is…slow.

Does our reduction even work
on this graph?

Ummm….

tl;dr: If your graph’s weights are all small positive integers, this reduction

might work great.

Otherwise we probably need a new idea.

s

u

v
t200

5000

5000

150

1

s

u

v
t𝜋

0.5

5000

3

1

CSE 373 19 SU - ROBBIE WEBER

Weighted Graphs: Take 3

So we can’t just do a reduction.

Instead figure out why BFS worked in the unweighted case,
try to make the same thing happen in the weighted case.

How did we avoid this problem:

s
tv

w

u

1

20

1

1 10 3

x

11

21

2

22

CSE 373 19 SU - ROBBIE WEBER

Weighted Graphs: Take 3

In BFS When we used a vertex u to update shortest paths we already
knew the exact shortest path to u.

So we never ran into the update problem

If we process the vertices in order of distance from s, we have a chance.

CSE 373 19 SU - ROBBIE WEBER

Weighted Graphs: Take 3

Goal: Process the vertices in order of distance from s

Idea:

Have a set of vertices that are “known”

-(we know at least one path from s to them).

Record an estimated distance

-(the best way we know to get to each vertex).

If we process only the vertex closest in estimated distance, we won’t
ever find a shorter path to a processed vertex.
-This statement is the key to proving correctness.

-It’s nice if you want to practice induction/understand the algorithm better.

CSE 373 19 SU - ROBBIE WEBER

Dijkstra’s Algorithm

s tv

w

u
1

20

1

1 1

x
1

Vertex Distance Predecessor Processed

s

w

x

u

v

t

Dijkstra(Graph G, Vertex source)

initialize distances to ∞

mark source as distance 0

mark all vertices unprocessed

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

foreach(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){

v.dist = u.dist+weight(u,v)

v.predecessor = u

}

}

mark u as processed

}

CSE 373 19 SU - ROBBIE WEBER

Dijkstra’s Algorithm

Dijkstra(Graph G, Vertex source)

initialize distances to ∞

mark source as distance 0

mark all vertices unprocessed

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

foreach(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){

v.dist = u.dist+weight(u,v)

v.predecessor = u

}

}

mark u as processed

}
s tv

w

u
1

20

1

1 1

x
1

Vertex Distance Predecessor Processed

s 0 -- Yes

w 1 s Yes

x 2 w Yes

u 20 3 s x Yes

v 4 u Yes

t 5 v Yes

CSE 373 19 SU - ROBBIE WEBER

Dijkstra’s Run Through

CSE 373 19 SU - ROBBIE WEBER 27

Vertex Distance
Predecesso

r
Processed

S

C

B

T

E

Pseudocode
Dijkstra(Graph G, Vertex source)

initialize distances to ∞

mark all vertices unprocessed

mark source as distance 0

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

for each(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){

v.dist = u.dist+weight(u,v)

v.predecessor = u

}

}

mark u as processed

}

Dijkstra’s Run Through

CSE 373 19 SU - ROBBIE WEBER 28

Vertex Distance
Predecesso

r
Processed

S 0 No

C ∞ No

B ∞ No

T ∞ No

E ∞ No

Pseudocode
Dijkstra(Graph G, Vertex source)

initialize distances to ∞

mark all vertices unprocessed

mark source as distance 0

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

for each(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){

v.dist = u.dist+weight(u,v)

v.predecessor = u

}

}

mark u as processed

}

Dijkstra’s Run Through

CSE 373 19 SU - ROBBIE WEBER 29

Vertex Distance
Predecesso

r
Processed

S 0 -- No

C 6 S No

B 1 S No

T ∞ No

E ∞ No

Pseudocode
Dijkstra(Graph G, Vertex source)

initialize distances to ∞

mark all vertices unprocessed

mark source as distance 0

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

for each(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){

v.dist = u.dist+weight(u,v)

v.predecessor = u

}

}

mark u as processed

}

Dijkstra’s Run Through

CSE 373 19 SU - ROBBIE WEBER 30

Vertex Distance
Predecesso

r
Processed

S 0 -- Yes

C 6 S No

B 1 S No

T ∞ No

E ∞ No

Pseudocode
Dijkstra(Graph G, Vertex source)

initialize distances to ∞

mark all vertices unprocessed

mark source as distance 0

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

for each(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){

v.dist = u.dist+weight(u,v)

v.predecessor = u

}

}

mark u as processed

}

Dijkstra’s Run Through

CSE 373 19 SU - ROBBIE WEBER 31

Vertex Distance
Predecesso

r
Processed

S 0 -- Yes

C 6 S No

B 1 S Yes

T 6 B No

E 2 B No

Pseudocode
Dijkstra(Graph G, Vertex source)

initialize distances to ∞

mark all vertices unprocessed

mark source as distance 0

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

for each(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){

v.dist = u.dist+weight(u,v)

v.predecessor = u

}

}

mark u as processed

}

Dijkstra’s Run Through

CSE 373 19 SU - ROBBIE WEBER 32

Vertex Distance
Predecesso

r
Processed

S 0 -- Yes

C 6 S No

B 1 S Yes

T 6 3 E No

E 2 B Yes

Pseudocode
Dijkstra(Graph G, Vertex source)

initialize distances to ∞

mark all vertices unprocessed

mark source as distance 0

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

for each(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){

v.dist = u.dist+weight(u,v)

v.predecessor = u

}

}

mark u as processed

}

Dijkstra’s Run Through

CSE 373 19 SU - ROBBIE WEBER 33

Vertex Distance
Predecesso

r
Processed

S 0 -- Yes

C 6 S No

B 1 S Yes

T 6 3 E Yes

E 2 B Yes

Pseudocode
Dijkstra(Graph G, Vertex source)

initialize distances to ∞

mark all vertices unprocessed

mark source as distance 0

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

for each(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){

v.dist = u.dist+weight(u,v)

v.predecessor = u

}

}

mark u as processed

}

Dijkstra’s Pseuodocode

CSE 373 19 SU - ROBBIE WEBER 34

Dijkstra(Graph G, Vertex source)

initialize distances to ∞

mark source as distance 0

mark all vertices unprocessed

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

foreach(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){

v.dist = u.dist+weight(u,v)

v.predecessor = u

}

}

mark u as processed

}

Huh?

Min Priority Queue ADT

removeMin() – returns and

removes element with the smallest

priority

state

behavior

Set of comparable values -

Ordered by “priority”

peek() – find the element with the

smallest priority

insert(value) – add new element to

collection

Dijkstra’s Pseuodocode

CSE 373 19 SU - ROBBIE WEBER 35

Dijkstra(Graph G, Vertex source)

initialize distances to ∞

mark source as distance 0

mark all vertices unprocessed

initialize MPQ as a Min Priority Queue, add source

while(there are unprocessed vertices){

u = MPQ.removeMin();

foreach(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){

v.dist = u.dist+weight(u,v)

v.predecessor = u

}

}

mark u as processed

}

Min Priority Queue ADT

removeMin() – returns and

removes element with the smallest

priority

state

behavior

Set of comparable values -

Ordered by “priority”

peek() – find the element with the

smallest priority

insert(value) – add new element to

collection

How?

CSE 373 19 SU - ROBBIE WEBER 36

Dijkstra(Graph G, Vertex source)

for (Vertex v : G.getVertices())

{ v.dist = INFINITY; }

G.getVertex(source).dist = 0;

initialize MPQ as a Min Priority Queue

add source

while(MPQ is not empty){

u = MPQ.removeMin();

for (Edge e : u.getEdges(u)){

oldDist = v.dist;

newDist = u.dist+weight(u,v)

if(newDist < oldDist){

v.dist = newDist

v.predecessor = u

if(oldDist == INFINITY) { MPQ.insert(v) }

else { MPQ.updatePriority(v, newDist) }

}

}

}

Dijkstra(Graph G, Vertex source)

initialize distances to ∞

mark source as distance 0

mark all vertices unprocessed

initialize MPQ as a Min Priority Queue

add source

while(there are unprocessed vertices){

u = MPQ.removeMin();

foreach(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){

v.dist = u.dist+weight(u,v)

v.predecessor = u

}

}

mark u as processed

}

Dijkstra’s Runtime

CSE 373 19 SU - ROBBIE WEBER 37

Dijkstra(Graph G, Vertex source)

for (Vertex v : G.getVertices()) { v.dist = INFINITY; }

G.getVertex(source).dist = 0;

initialize MPQ as a Min Priority Queue, add source

while(MPQ is not empty){

u = MPQ.removeMin();

for (Edge e : u.getEdges(u)){

oldDist = v.dist; newDist = u.dist+weight(u,v)

if(newDist < oldDist){

v.dist = newDist

v.predecessor = u

if(oldDist == INFINITY) { MPQ.insert(v) }

else { MPQ.updatePriority(v, newDist) }

}

}

}

+logV

+logV

This actually doesn’t run 𝑚 times

for every iteration of the outer

loop. It actually will run 𝑚 times

in total; if every vertex is only

removed from the priority queue

(processed) once, then we

examine each edge once. Each

line inside this foreach gets

multiplied by a single E instead of

E * V.

Tight O Bound = O(n log n + m

log n)

Just like when we analyzed BFS,

don’t just work inside out; try to

figure out how many times each

line will be executed.

More Dijkstra’s Implementation

The details of the implementation depend on what data structures you have available.

Your implementation in the programming project will be different in a few spots.

Our running time is Θ(𝐸 log 𝑉 + 𝑉 log 𝑉) i.e. Θ(𝑚 log 𝑛 + 𝑛 log 𝑛) .

If you go to Wikipedia right now, they say it’s 𝑂(𝐸 + 𝑉 log𝑉)

They’re using a Fibonacci heap instead of a binary heap.

Θ(𝐸 log 𝑉 + 𝑉 log 𝑉) is the right running time for this class.

CSE 373 19 SU - ROBBIE WEBER 38

Optional Content
More Graph Applications

CSE 373 19 SU - ROBBIE WEBER

Another Application of Shortest Paths

Shortest path algorithms are obviously useful for GoogleMaps.

The wonderful thing about graphs is they can encode arbitrary relationships among
objects.

We won’t test you on this application of Dijkstra’s

I just want you to see that these algorithms have non-obvious applications.

CSE 373 19 SU - ROBBIE WEBER

Another Application of Shortest Paths

Given: a directed graph G, where each edge weight is the probability

of successfully transmitting a message across that edge

Find: the path from s to t with maximum probability of message

transmission

Maximum Probability Path

I have a message I need to get from point s to point t.

But the connections are unreliable.

What path should I send the message along so it has the best chance of arriving?

s

u

v

t0.6

0.8

0.97

0.7

0.2

CSE 373 19 SU - ROBBIE WEBER

Another Application of Shortest Paths

Let each edge’s weight be the probability a message is sent successfully across the edge.

What’s the probability we get our message all the way across a path?
- It’s the product of the edge weights.

We only know how to handle sums of edge weights.

Is there a way to turn products into sums?

log 𝑎𝑏 = log 𝑎 + log 𝑏

s

u

v

t0.6

0.8

0.97

0.7

0.2

CSE 373 19 SU - ROBBIE WEBER

Another Application of Shortest Paths

We’ve still got two problems.

1. When we take logs, our edge weights become negative.

2. We want the maximum probability of success, but that’s the longest path not the shortest
one.

Multiplying all edge weights by negative one fixes both problems at once!

We reduced the maximum probability path problem to a shortest path problem by taking
− log() of each edge weight.

s

u

v

t-0.74

-0.32

-0.04

-0.51

-2.32

CSE 373 19 SU - ROBBIE WEBER

Maximum Probability Path Reduction

s

u

v

t0.74

0.32

0.04

0.51

2.32

s

u

v

t0.6

0.8

0.97

0.7

0.2

s

u

v

t0.6

0.8

0.97

0.7

0.2

s

u

v

t0.74

0.32

0.04

0.51

2.32

Weighted Shortest Paths

Transform Input

Transform Output

CSE 373 19 SU - ROBBIE WEBER

