AT PR

Lecture 17: Shortest |
3 t h S Algorithms

tures and

CSE 37319 SU - ROBBIE WEBER

Administrivia
Project 4 partner form due tonight.

Project 3 due Wednesday

Exercise 4 Is out.

CSE 37319 SU - ROBBIE WEBER 2

Warm Up

Run Breadth First Search on this graph starting from s.

What order are vertices placed on the queue?
When processing a vertex insert neighbors in alphabetical order.

In a directed graph, BFS only follows an edge in the direction it points.

bfs (graph)
toVisit.enqueue (first vertex)
mark first vertex as seen
while (toVisit i1s not empty)
current = toVisit.dequeue ()
for (V : current.outneighbors{())
1f (v 1s not seen)

pollEV.com/cse373su19 mark v as visited

What order are vertices toVisit.enqueue (V)
placed on the queue?

CSE 37319 SU - ROBBIE WEBER

Warm Up

Run Breadth First Search on this graph starting from s.

What order are vertices placed on the queue?
When processing a vertex insert neighbors in alphabetical order.

In a directed graph, BFS only follows an edge in the direction it points.

bfs (graph)
toVisit.enqueue (first vertex)
mark first vertex as seen
while (toVisit i1s not empty)

current = toVisit.dequeue ()

for (V : current.outneighbors{())

1f (v 1s not seen)
mark v as visited

Correct order: s,u,v,y,x,w,t toVisit.enqueue (v)

CSE 37319 SU - ROBBIE WEBER

Shortest Paths

How does Google Maps figure out this is the fastest way to get to office hours?

: Communications} o

K, b y i 4 : gBuiIding|(CMU) B 8 Siford Paiking Barage o

hington = > % ® &% "3 32
Odegaard Undergraduate 2 , g Padelford H‘?“ @FDL

~ Library/(QUG) . e < Parking Area:N2

- "ot

HenryjArt Gallery Kane Hall Biei

&
A = 3 “(e)Kane Hall (KNE)
=

Smith Hallﬁ%Ml) Parking AreaiN22

: £ Fluke Hall, University @@

Meany/Hall for the @i =
* Performing Arts] - . of Washington NS
Allen Libraries 4 HuskylUnio

Bldg (LB VIl : University, of

5 Washington

Wi Srey%
S -
“Sieg Hall (SIG)

2. B
A 3
e Grant Lok, &

—
ArchitecturejHall (Al

:
i}
z
>
3
=
0
S
g
s
(2
=

Bldg,(EEB)§
& s

enzon n NE
A
(Raul G’ AIIg}Cp ersy
for/Gomputer:Science..¥
-2 . “ §
ics/Astronomy
torium,(RAA) i : ’
m 3 - oS /
l’&d

ce Agency, Map d Terms

CSE 37319 SU - ROBBIE WEBER 5

Representing Maps as Graphs

represent a map as a graph? What are the vertices and edges?

How do we

K,
hington

Odegaard Undergraduate
Libraryi(QUG)

el
Henry/Art Gallery
il
AR

=

Meany/Hall for the @i
Performing Arts

WiSte,,
S
s,
b

/i‘u, &
S

—
ArchitecturejHall (Al

:
i}
z
>
3
=
0
S
g
s
(2
=

- 2

ics/Astronomy
torium,(PAA)

Communications} o
gcLiding (Cxu) Radelford Paiking Barage o
-
Padeélford.Hall\(RDL
Parking Area:N2

KanejHall g 4
Smith,Hall'(SMI) Parking AreaiN22

“®)Kane Hall (KNE)
=
4 «
Fluke Hall, University/§@
= of Washington
B

Allen Librariest = Husky/Unio
Bldg (HUB)= I ’ University of
- Washington

“Sieg Hall (SIG)

e Grant Lok, &

Bldg,(EEB)§
®.- Een’On UnNg,
A

(Raul G’ AIIg}Cp ersy
for/Gomputer:Science..¥
% - 2

= SRS v/
Ry
ce Agency, Map d: Terms

CSE 37319 SU - ROBBIE WEBER

6

Representing Maps as Graphs

CSE 37319 SU - ROBBIE WEBER

Shortest Paths

The length of a path is the sum of the edge weights on that path.

Shortest Path Problem

Given: a directed graph G and vertices s and t

Find: the shortest path from s to t

CSE 37319 SU - ROBBIE WEBER 8

Unweighted graphs

Let's start with a simpler version: the edges are all the same weight (unweighted)

If the graph is unweighted, how do we find a shortest paths?

=z
Crockett St ‘)
:t Pea Cottage 7

chool of the Arts

,IA

East Queen
Anne
VY Playground

J/

ym

CSE 37319 SU - ROBBIE WEBER 9

Unweighted Graphs

If the graph is unweighted, how do we find a shortest paths?

What's the shortest path from s to s?
Well...we're already there.

What's the shortest path from s to u or v?
Just go on the edge from s

From s to wx, or y?
Can't get there directly from s, if we want a length 2 path, have to go through u or v.

CSE 37319 SU - ROBBIE WEBER 10

Unweighted Graphs: Key Idea

To find the set of vertices at distance k, just find the set of vertices at distance k-1, and see if
any of them have an outgoing edge to an undiscovered vertex.

Do we already know an algorithm that does something like that?

Yec! BES! bfsShortestPaths (graph G, vertex source)
' ' toVisit.enqueue (source)
mark source as seen
source.dist = 0
while (toVisit 1s not empty) {
current = toVisit.dequeue ()
for (v : current.outNeighbors{())
{
if (v 1is not seen) {
v.distance = current.distance + 1
v.predecessor = current
toVisit.enqueue (V)
mark v as seen

} CSE 37319 SU - ROBBIE WEBER N

Unweighted Graphs

Use BFS to find shortest paths in this graph.

bfsShortestPaths (graph G, vertex source)
toVisit.enqueue (source)
mark source as seen
source.dist = 0
while (toVisit 1s not empty) {
current = toVisit.dequeue ()
for (v : current.outNeighbors/())
{
1f (v 1s not seen) {
v.distance = current.distance + 1
v.predecessor = current
toVisit.enqueue (V)
mark v as seen

CSE 37319 SU - ROBBIE WEBER

Unweighted Graphs

Use BFS to find shortest paths in this graph.
T

bfsShortestPaths (graph G, vertex source)
toVisit.enqueue (source)
mark source as seen
source.dist = 0

while (toVisit is not empty) { 3
current = toVisit.dequeue ()
for (v : current.outNeighbors/())

i T 2

if (v 1s not seen) {
v.distance = current.distance + 1
v.predecessor = current
toVisit.enqueue (V)
mark v as seen

CSE 37319 SU - ROBBIE WEBER 13

What about the target vertex?

Shortest Path Problem

Given: a directed graph G and vertices st
Find: the shortest path from s to t.

BFS didn't mention a target vertex...
It actually finds the distance from s to every other vertex.

All our shortest path algorithms have this property.

If you only care about one target, you can sometimes stop early (in
bfsShortestPaths, when the target pops off the queue)

CSE 37319 SU - ROBBIE WEBER 14

Weighted Graphs

Each edge should represent the “time” or “distance” from one vertex to another.

Sometimes those aren’t uniform, so we put a weight on each edge to record that
number.

The length of a path in a weighted graph is the sum of the weights along that path.

We'll assume all of the weights are positive
For GoogleMaps that definitely makes sense.
Sometimes negative weights make sense. Today's algorithm doesn't work for those
graphs
There are other algorithms that do work.

CSE 37319 SU - ROBBIE WEBER 15

Weighted Graphs: Take 1

BFS works if the graph is unweighted.
Maybe it just works for weighted graphs too?

1

20 1 1

CSE 37319 SU - ROBBIE WEBER

Weighted Graphs: Take 1

BFS works if the graph is unweighted. Maybe it just works for weighted graphs too?

What went wrong? When we found a shorter path from s to u, we needed to update the
distance to v (and anything whose shortest path went through u) but BFS doesn’t do that.

CSE 37319 SU - ROBBIE WEBER 17

Weighted Graphs: Take 2

Reduction (informally)

Using an algorithm for Problem B to solve Problem A.

You already do this all the time.

In Project 2, you reduced implementing a hashset to implementing a
hashmap.

Any time you use a library, you're reducing your problem to the one the
library solves.

Can we reduce finding shortest paths on weighted graphs to finding
them on unweighted graphs?

CSE 37319 SU - ROBBIE WEBER

Weighted Graphs: Take 2

Given a weighted graph, how do we turn it into an unweighted one
without messing up the path lengths?

CSE 37319 SU - ROBBIE WEBER

Weighted Graphs: A Reduction

Transform Input

Unweighted Shortest Paths

Transform Output

CSE 37319 SU - ROBBIE WEBER

Weighted Graphs: A Reduction

What is the running time of Does our reduction even work
our reduction on this graph? on this graph?
5000 @ 0 N 5 m
e G
15000 1 > 00
O(|V|+|E|) of the modified
graph, which is...slow. Ummm....

tl;dr: If your graph'’s weights are all small positive integers, this reduction
might work great.
Otherwise we probably need a new idea.

CSE 37319 SU - ROBBIE WEBER

Weighted Graphs: Take 3

So we can't just do a reduction.

Instead figure out why BFS worked in the unweighted case,
try to make the same thing happen in the weighted case.

How did we avoid this problem:

CSE 37319 SU - ROBBIE WEBER

Weighted Graphs: Take 3

In BFS When we used a vertex u to update shortest paths we already
knew the exact shortest path to u.

So we never ran into the update problem

If we process the vertices in order of distance from s, we have a chance.

CSE 37319 SU - ROBBIE WEBER

Weighted Graphs: Take 3

Goal: Process the vertices in order of distance from s
|dea:

Have a set of vertices that are “known”
(we know at least one path from s to them).

Record an estimated distance
(the best way we know to get to each vertex).

If we process only the vertex closest in estimated distance, we won't
ever find a shorter path to a processed vertex.

This statement is the key to proving correctness.
It's nice if you want to practice induction/understand the algorithm better.

CSE 37319 SU - ROBBIE WEBER

Dijkstra’s Algorithm

Vertex Predecessor | Processed
S

Dijkstra (Graph G, Vertex source)
initialize distances to o
mark source as distance 0 W
mark all vertices unprocessed X

while (there are unprocessed vertices) {
let u be the closest unprocessed vertex U

foreach (edge (u,v) leaving u) {

Vv

1if(u.dist+weight (u,v) < wv.dist) {
v.dist = u.dist+weight (u,v) T
V.predecessor = u 1

}

mark u as processed

CSE 37319 SU - ROBBIE WEBER

Dijkstra’s Algorithm
0 -- Yes

Dijkstra (Graph G, Vertex source) -
initialize distances to o W 1 S Yes
mark source as distance 0
mark all vertices unprocessed X 2 W ves
while (there are unprocessed vertices) { U 20 3 S X Yes
let u be the closest unprocessed vertex
foreach (edge (u,v) leaving u) { v 4 u YéS
if (u.dist+weight (u,v) < v.dist) { t 5 V Yes

v.dist = u.dist+weight (u,v)
V.predecessor = u

}

mark u as processed

CSE 37319 SU - ROBBIE WEBER

Predecesso

Dijkstra’s Run Through e R

Pseudocode

Dijkstra (Graph G, Vertex source)
initialize distances to o
mark all vertices unprocessed

m - o OO !

mark source as distance O
while (there are unprocessed vertices) {
let u be the closest unprocessed vertex
for each(edge (u,v) leaving u) {
if(u.dist+weight (u,v) < wv.dist) {
v.dist = u.dist+weight (u,v)
v.predecessor = u

}

mark u as processed

CSE 37319 SU - ROBBIE WEBER 27

Dijkstra’s Run Through

Pseudocode
Dijkstra (Graph G, Vertex source)
initialize distances to o™
mark all vertices unprocessed
mark source as distance 0
while (there are unprocessed vertices) {
let u be the closest unprocessed vertex
for each(edge (u,v) leaving u) {
if(u.dist+weight (u,v) < wv.dist) {
v.dist = u.dist+weight (u,v)
v.predecessor = u

}

mark u as processed

m - o OO !

No
No
No
No

CSE 37319 SU - ROBBIE WEBER

28

Dijkstra’s Run Through

Pseudocode
Dijkstra (Graph G, Vertex source)
initialize distances to o
mark all vertices unprocessed
mark source as distance O
while (there are unprocessed vertices) {
let u be the closest unprocessed vertex
for each(edge (u,v) leaving u) {
if (u.dist+weight(u,v) < v.dist) {
v.dist = u.dist+weight(u,v)
v.predecessor = u

}

mark u as processed

m - o OO !

S No
S No
No
No

CSE 37319 SU - ROBBIE WEBER

29

Dijkstra’s Run Through

Pseudocode
Dijkstra (Graph G, Vertex source)
initialize distances to o
mark all vertices unprocessed
mark source as distance O
while (there are unprocessed vertices) {
let u be the closest unprocessed vertex
for each(edge (u,v) leaving u) {
if(u.dist+weight (u,v) < wv.dist) {
v.dist = u.dist+weight (u,v)

v.predecessor = u

}

mark u as processed

m - o OO !

S No
S No
No
No

CSE 37319 SU - ROBBIE WEBER

30

Dijkstra’s Run Through

S
C 6 S No
Pseudocode : . v
Dijkstra (Graph G, Vertex source) B €5
initialize distances to o T 6 B No
mark all vertices unprocessed
mark source as distance O E 2 B No

while (there are unprocessed vertices) {
let u be the closest unprocessed vertex
for each(edge (u,v) leaving u) {
if (u.dist+weight(u,v) < v.dist) {
v.dist = u.dist+weight(u,v)
v.predecessor = u

}

mark u as processed

CSE 37319 SU - ROBBIE WEBER 31

Dijkstra’s Run Through

Pseudocode
Dijkstra (Graph G, Vertex source)
initialize distances to o
mark all vertices unprocessed
mark source as distance O
while (there are unprocessed vertices) {
let u be the closest unprocessed vertex
for each(edge (u,v) leaving u) {
if (u.dist+weight(u,v) < v.dist) {
v.dist = u.dist+weight(u,v)
v.predecessor = u

}

mark u as processed

m - o OO !

No
Yes

No

o m un M

Yes

CSE 37319 SU - ROBBIE WEBER

32

Dijkstra’s Run Through

Pseudocode
Dijkstra (Graph G, Vertex source)
initialize distances to o
mark all vertices unprocessed
mark source as distance O
while (there are unprocessed vertices) {
let u be the closest unprocessed vertex
for each(edge (u,v) leaving u) {
if (u.dist+weight(u,v) < v.dist) {
v.dist = u.dist+weight(u,v)
v.predecessor = u

}

mark u as processed

m - o OO !

No
Yes

Yes

o m un M

Yes

CSE 37319 SU - ROBBIE WEBER

33

Dijkstra’s Pseuodocode

Dijkstra (Graph G, Vertex source)
initialize distances to o
mark source as distance 0
mark all vertices unprocessed

while (there are unprocessed vertices) {

let u be the closest unprocessed vertex =
foreach (edge (u,v) leaving u) {
if(u.dist+weight (u,v) < v.dist) {
v.dist = u.dist+weight (u,v)

v.predecessor = u

}

mark u as processed

Huh?

Min Priority Queue ADT

state
Set of comparable values -
Ordered by “priority”

behavior
peek() — find the element with the
smallest priority
insert(value) — add new element to
collection

removeMin() — returns and
removes element with the smallest
priority

CSE 37319 SU - ROBBIE WEBER

34

Dijkstra’s Pseuodocode

Dijkstra (Graph G, Vertex source)

initialize distances to oo

mark source as distance O

state
mark all vertices unprocessed < Set of comparable values -
initialize MPQ as a Min Priority Queue, add source Ordered by’*)ﬁorﬁy"
while (there are unprocessed vertices) { < ? .
e How: behavior
= MPQ.removeMin () ; . .
“ Q. removeitin() peek() - find the element with the
foreach (edge (u,v) leaving u) { sn1aHestgyﬁorhy
1f(u.disttweight (u,v) < v.dist){ insert(value) — add new element to
v.dist = u.dist+weight (u, v) collection
v.predecessor = u removeMin() — returns and
} removes element with the smallest
} priority

mark u as processed -

CSE 37319 SU - ROBBIE WEBER

35

Dijkstra (Graph G, Vertex source)
initialize distances to
mark source as distance O

mark all vertices unprocessed

initialize MPQ as a Min Priority Queue
add source
while (there are unprocessed vertices) {
u MPQ.removeMin () ;
foreach (edge

(u,v) leaving u) {

if(u.dist+weight (u, v)
v.dist

< v.dist) {
u.dist+tweight (u, v)
V.predecessor

u

}

mark u as processed

} CSE 373 19 SU - ROBBIE WEBER

Dijkstra (Graph G, Vertex source)

for (Vertex v G.getVertices())

{ v.dist INFINITY,; }
G.getVertex (source) .dist

0;

initialize MPQ as a Min Priority Queue
add source

while (MPQ 1is not empty) {

u = MPQ.removeMin () ;

for (Edge e u.getlEdges (u)) {
oldDist = v.dist;
newDist = u.dist+weight (u, v)

i1f (newDist < oldDist) {
v.dist

newDist
V.predecessor = u
if (oldDist INFINITY) { MPQ.insert (v) }

else { MPQ.updatePriority (v, newDist) }

36

Just like when we analyzed BFS,

D U kSt ra ,S Ru ntl me don't just work inside out; try to

figure out how many times each

line will be executed.
Dijkstra (Graph G, Vertex source)

for (Vertex v : G.getVertices()) { v.dist = INFINITY,; }
G.getVertex (source) .dist = 0;
initialize MPQ as a Min Priority Queue, add source

while (MPQ is not empty) {

u = MPQO.removeMin () ; This actually doesn't run m times

for every iteration of the outer
loop. It actually will run m times
in total; if every vertex is only
removed from the priority queue

for (Edge e : u.getEdges(u)) {

0ldDist = v.dist; newDist = u.dist+weigh

if (newDist < oldDist) {

v.dist = newDist (processed) once, then we
v.predecessor = u examine each edge once. Each
if (0ldDist == INFINITY) { MPQ.insert (v) } line |_ns!de this fqreaCh gets
multiplied by a single E instead of
else { MPQ.updatePriority (v, newDist) } E*\
J Tight O Bound = O(nlog n + m
) log n)

} CSE 373 19 SU - ROBBIE WEBER

37

More Dijkstra’s Implementation

The details of the implementation depend on what data structures you have available.

Your implementation in the programming project will be different in a few spots.
Our running time is O(E'logV + VlogV) i.e. O(mlogn + nlogn).
If you go to Wikipedia right now, they say it's O(E + V' logV)

They're using a Fibonacci heap instead of a binary heap.

O(E logV + VlogV) is the right running time for this class.

CSE 37319 SU - ROBBIE WEBER 38

Optional Content

~ More Graph Applications

CSE 37319 SU - ROBBIE WEBER

Another Application of Shortest Paths

Shortest path algorithms are obviously useful for GoogleMaps.

The wonderful thing about graphs is they can encode arbitrary relationships among
objects.

We won't test you on this application of Dijkstra’s

| jJust want you to see that these algorithms have non-obvious applications.

CSE 37319 SU - ROBBIE WEBER

Another Application of Shortest Paths

| have a message | need to get from point s to point t.
But the connections are unreliable.
What path should | send the message along so it has the best chance of arriving?

Maximum Probability Path

Given: a directed graph G, where each edge weight is the probability
of successfully transmitting a message across that edge

Find: the path from s to t with maximum probability of message
transmission

CSE 37319 SU - ROBBIE WEBER

Another Application of Shortest Paths

Let each edge’s weight be the probability a message is sent successfully across the edge.

What's the probability we get our message all the way across a path?
It's the product of the edge weights.

We only know how to handle sums of edge weights.
s there a way to turn products into sums?

log(ab) = loga + logb

CSE 37319 SU - ROBBIE WEBER

Another Application of Shortest Paths

We've still got two problem:s.

1. When we take logs, our edge weights become negative.

2. We want the maximum probability of success, but that's the longest path not the shortest
one.

Multiplying all edge weights by negative one fixes both problems at once!

We reduced the maximum probability path problem to a shortest path problem by taking
— log() of each edge weight.

CSE 37319 SU - ROBBIE WEBER

Maximum Probability Path Reduction

Transform Input

Weighted Shortest Paths

Transform Output

CSE 37319 SU - ROBBIE WEBER

