
Lecture 16: Graphs CSE 373 Data Structures and

Algorithms

Administrivia

Exercise 3 due tonight.

Exercise 4 out today.

Robbie has one-on-one “talk about the midterm/your grade” office hours today (2:30-4 in
CSE 330)

Sorting Summary

You have a bunch of data. How do you sort it?

Honestly…use your language’s default implementation
-It’s been carefully optimized.

In practice, quicksort usually has the best constant factors among those
we’ve discussed. (But remember it’s worst case is Θ(𝑛2).)

Choose a specific algorithm If you’re situation is special
-Not a lot of extra memory? Use an in-place sort.

-Want to sort repeatedly to break ties? Use a stable sort.

-Know your data is integers in a small range? Maybe radix sort.

Graphs

ADTs so far

Queues and Stacks
-We want to process our data in some order (based on when they were inserted)

Lists
-We want to maintain an order, but add or remove from anywhere

Priority Queues
-Our data had some priority we needed to keep track of, and wanted to process in
order of importance.

Dictionaries
-Our data points came as (key, value) pairs.

-Quickly find the value for a key

Graphs

We’ll list Graphs as one of our ADTs…

But don’t let that limit your thinking. They are more versatile than any ADT

we’ve seen before.

(pattern of abstract data types)

Graphs

Graphs are versatile enough, I’m not going to show you one of those
gold boxes with states and behaviors

The state/behaviors to track change with every new problem we try to
solve.

Graphs

Everything is graphs.

Most things we’ve studied this quarter can be represented by graphs.
- BSTs are graphs

- Linked lists? Graphs.

- Heaps? Also can be represented as graphs.

- Those trees we drew in the tree method? Graphs.

But it’s not just data structures that we’ve discussed…
- Google Maps database? Graph.

- Facebook? They have a “graph search” team. Because it’s a graph

- Gitlab’s history of a repository? Graph.

- Those pictures of prerequisites in your program? Graphs.

- Family tree? That’s a graph

Graphs

Represent data points and the relationships between pairs of them.

That’s vague.

Formally:

A graph is a pair: G = (V,E)

V: set of vertices (aka nodes)

E: set of edges
-Each edge is a pair of vertices.

A

B

C

D

{𝐴, 𝐵, 𝐶, 𝐷}

{(𝐴, 𝐵), (𝐵, 𝐶), (𝐵, 𝐷), (𝐶, 𝐷)}

Graph Terms

Graphs can be directed or undirected.

Kasey

Robbie

Zach

Kasey

Robbie

Degree: 2

Degree: 0

Outdegree: 2

Indegree: 2

This graph is

disconnected.

Following on twitter.

Friendships on Facebook.

Zach

Making Graphs

If your problem has data and relationships, you might want to represent
it as a graph

How do you choose a representation?

Usually:

Think about what your “fundamental” objects are
-Those become your vertices.

Then think about how they’re related
-Those become your edges.

Some examples

For each of the following think about what you should choose for
vertices and edges.

The internet

Family tree

Input data for the “6 degrees of Kevin Bacon” game

Course Prerequisites

pollEV.com/cse373su19

Which of these did you

talk most about with
your neighbors?

Some examples

For each of the following think about what you should choose for
vertices and edges.

The internet
-Vertices: webpages. Edges from a to b if a has a hyperlink to b.

Family tree
-Vertices: people. Edges: from parent to child, maybe for marriages too?

Input data for the “6 Degrees of Kevin Bacon” game
-Vertices: actors. Edges: if two people appeared in the same movie

-Or: Vertices for actors and movies, edge from actors to movies they appeared in.

Course Prerequisites
-Vertices: courses. Edge: from a to b if a is a prereq for b.

Graph Terms

Walk – A sequence of adjacent vertices. Each connected to next by an edge.

(Directed) Walk–must follow the direction of the edges

Length – The number of edges in a walk

- (A,B,C,D) has length 3.

A B C D

A B C D

A,B,C,D is a walk.

So is A,B,A

A,B,C,D,B is a directed walk.

A,B,A is not.

Graph Terms

Path – A walk that doesn’t repeat a vertex. A,B,C,D is a path. A,B,A is not.

Cycle – path with an extra edge from last vertex back to first.

Be careful looking at other sources.

Some people call our “walks” “paths” and our “paths” “simple paths”

Use the definitions on these slides.

A B C D

A B C D

Representing and Using Graphs

Adjacency Matrix

0 1 2 3 4 5 6

0 0 1 1 0 0 0 0

1 1 0 0 1 0 0 0

2 1 0 0 1 0 0 0

3 0 1 1 0 0 1 0

4 0 0 0 0 0 1 0

5 0 0 0 1 1 0 0

6 0 0 0 0 0 0 0

6
2 3

4

5

0 1

In an adjacency matrix a[u][v] is 1 if

there is an edge (u,v), and 0 otherwise.

Worst-case Time Complexity

(|V| = n, |E| = m):

Add Edge:

Remove Edge:

Check edge exists from (u,v):

Get outneighbors of u:

Get inneighbors of u:

Space Complexity:

Θ(1)

Θ(1)

Θ(1)
Θ(𝑛)

Θ(𝑛)

Θ(𝑛2)

Adjacency List

0

1

2

3

4

5

6

6
2 3

4

5

0 1

1 → 2

0 → 3

0 → 3

3 → 4

5

1 → 2 → 5

An array where the 𝑢th element contains a list of

neighbors of 𝑢.

Directed graphs: list of out-neighbors (a[u] has v for all

(u,v) in E)

Time Complexity (|V| = n, |E| = m):

Add Edge:

Remove Edge (u,v):

Check edge exists from (u,v):

Get neighbors of u (out):

Get neighbors of u (in):

Space Complexity:

Θ(1)
Θ(deg(𝑢))

Θ(deg 𝑢)

Θ(𝑛 + 𝑚)

Θ(𝑛 + 𝑚)

Suppose we use a

linked list for each

node.

Θ(deg(𝑢))

Adjacency List

0

1

2

3

4

5

6

6
2 3

4

5

0 1

1 → 2

0 → 3

0 → 3

3 → 4

5

1 → 2 → 5

An array where the 𝑢th element contains a list of

neighbors of 𝑢.

Directed graphs: list of out-neighbors (a[u] has v for all

(u,v) in E)

Time Complexity (|V| = n, |E| = m):

Add Edge:

Remove Edge:

Check edge exists from (u,v):

Get neighbors of u (out):

Get neighbors of u (in):

Space Complexity:

Θ(1)
Θ(1)

Θ(1)

Θ(deg(𝑢))

Θ(𝑛)

Θ(𝑛 + 𝑚)

Switch the linked lists to

hash tables, and do

in-practice analysis.

Tradeoffs

Adjacency Matrices take more space, and have slower Θ() bounds, why would you use
them?
- For dense graphs (where 𝑚 is close to 𝑛2), the running times will be close

- And the constant factors can be much better for matrices than for lists.

- Sometimes the matrix itself is useful (“spectral graph theory”)

What’s the tradeoff between using linked lists and hash tables for the list of neighbors?
- A hash table still might hit a worst-case

- And the linked list might not

- Graph algorithms often just need to iterate over all the neighbors, so you might get a better guarantee with
the linked list.

For this class, unless we say otherwise, we’ll assume the hash tables operations on graphs
are all 𝑂 1 .
- Because you can probably control the keys.

Unless we say otherwise, assume we’re using an adjacency list with hash tables for each list.

Traversals

Breadth First Search

Current node:

Queue:

Finished:

F

B

C

D

A

E

G

H

I

J

A B

A

B E C

D

D F G

BDE

H

E

C

C

F

F

G

G

I

G

H

HI

I

search(graph)

toVisit.enqueue(first vertex)

mark first vertex as seen

while(toVisit is not empty)

current = toVisit.dequeue()

for (v : current.neighbors())

if (v is not seen)

mark v as seen

toVisit.enqueue(v)

Breadth First Search

F

B

C

D

A

E

G

H

I

J

Hey we missed something…

We’re only going to find vertices we can “reach” from our starting point.

If you need to visit everything, just start BFS again somewhere you haven’t visited until you’ve found
everything.

search(graph)

toVisit.enqueue(first vertex)

mark first vertex as seen

while(toVisit is not empty)

current = toVisit.dequeue()

for (v : current.neighbors())

if (v is not seen)

mark v as seen

toVisit.enqueue(v)

Running Time

search(graph)

toVisit.enqueue(first vertex)

mark first vertex as seen

while(toVisit is not empty)

current = toVisit.dequeue()

for (v : current.neighbors())

if (v is not seen)

mark v as seen

toVisit.enqueue(v)

We visit each vertex at most twice, and each edge at most once: Θ(|𝑉| + |𝐸|)

This code might look like:

a loop that goes around 𝑚 times

Inside a loop that goes around 𝑛 times,

So you might say 𝑂 𝑚𝑛 .

That bound is not tight,

Don’t think about the loops, think about

what happens overall.
How many times is current changed?

How many times does an edge get used
to define current.neighbors?

Implementation

What does “mark as seen” mean?

It’s up to you!

My lectures are going to assume that each vertex/edge is an object, and that we’ve added
whatever field we want into it.

Alternatively, you can make “seen” a dictionary (keys are vertices, values are the variable we
want to set)
- Again, you control the keys, so you should be able to get Θ 1 time without too much trouble.

Regardless, you can do those operations in Θ(1) time.

In general our graph code will be a little more “abstract”

I won’t try to precisely say what fields each object has (it’s more trouble than it’s worth)

Depth First Search (DFS)
BFS uses a queue to order which vertex we move to next

Gives us a growing “frontier” movement across graph

Can you move in a different pattern? What if you used a stack instead?

bfs(graph)

toVisit.enqueue(first vertex)

mark first vertex as seen

while(toVisit is not empty)

current = toVisit.dequeue()

for (v : current.neighbors())

if (v is not seen)

mark v as seen

toVisit.enqueue(v)

dfs(graph)

toVisit.push(first vertex)

mark first vertex as seen

while(toVisit is not empty)

current = toVisit.pop()

for (v : current.neighbors())

if (v is not seen)

mark v as seen

toVisit.push(v)

Depth First Search

F

B

C

D

A

E

G

H

I

J

Current node:

Stack:

Finished: A B

A

B EC

D

D FG

BE

H

E CFG

I

H

H

I

GFICD

dfs(graph)

toVisit.push(first vertex)

mark first vertex as seen

while(toVisit is not empty)

current = toVisit.pop()

for (v : current.neighbors())

if (v is not seen)

mark v as seen

toVisit.push(v)

DFS

Worst-case running time?

-Same as BFS: 𝑂(𝑉 + 𝐸)

Indicentally, you can rewrite DFS to be a recursive method.
-Use the call stack as your stack.

-No easy trick to do the same with BFS.

BFS vs. DFS

So why have two different traversals?

For the same reason we had pre/post/in –order traversals for trees!

BFS and DFS will find vertices in a different order, so they can let you calculate different
things.

We’ll see an application of BFS next week.

And an application of DFS the week after.

