
Lecture 14: Sorting
Algorithms

CSE 373: Data Structures and

Algorithms

CSE 373 19 SU - ROBBIE WEBER 1

Administrivia

Robbie’s office hours today are cancelled (we have to grade your midterms)

Project 3 Partner form is due tonight (P3 will be released Wednesday)

Project 2 due Wednesday

Exercise 3 due Friday

CSE 373 19 SU - ROBBIE WEBER 2

Sorting

CSE 373 19 SU - ROBBIE WEBER 3

Where are we?

This course is “data structures and algorithms”

Data structures
- Organize our data so we can process it effectively

Algorithms
- Actually process our data!

We’re going to start focusing on algorithms

We’ll start with sorting
- A very common, generally-useful preprocessing step

- And a convenient way to discuss a few different ideas for designing algorithms.

CSE 373 19 SU - ROBBIE WEBER 4

Types of Sorts

Comparison Sorts

Compare two elements at a time

General sort, works for most types of
elements

What does this mean? compareTo() works
for your elements
- And for our running times to be correct, compareTo

must run in 𝑂(1) time.

CSE 373 19 SU - ROBBIE WEBER 5

Niche Sorts aka “linear sorts”

Leverages specific properties about
the items in the list to achieve faster
runtimes

niche sorts typically run O(n) time

For example, we’re sorting small
integers, or short strings.

In this class we’ll focus on comparison
sorts

Sorting Goals
In Place sort

A sorting algorithm is in-place if it allocates 𝑂(1) extra memory

Modifies input array (can’t copy data into new array)

Useful to minimize memory usage

CSE 373 19 SU - ROBBIE WEBER 6

Stable sort

A sorting algorithm is stable if any equal items remain in the same relative
order before and after the sort

Why do we care?

- “data exploration” Client code will want to sort by multiple features and
“break ties” with secondary features

[(8, “fox”), (9, “dog”), (4, “wolf”), (8, “cow”)]

[(4, “wolf”), (8, “fox”), (8, “cow”), (9, “dog”)]

[(4, “wolf”), (8, “cow”), (8, “fox”), (9, “dog”)]

Stable

Unstable

Speed

Of course, we want our algorithms to
be fast.

Sorting is so common, that we often
start caring about constant factors.

SO MANY SORTS

Quicksort, Merge sort, in-place merge sort, heap sort,
insertion sort, intro sort, selection sort, timsort, cubesort,
shell sort, bubble sort, binary tree sort, cycle sort, library sort,
patience sorting, smoothsort, strand sort, tournament sort,
cocktail sort, comb sort, gnome sort, block sort,
stackoverflow sort, odd-even sort, pigeonhole sort, bucket
sort, counting sort, radix sort, spreadsort, burstsort, flashsort,
postman sort, bead sort, simple pancake sort, spaghetti sort,
sorting network, bitonic sort, bogosort, stooge sort, insertion
sort, slow sort, rainbow sort…

CSE 373 19 SU - ROBBIE WEBER 7

Goals

Algorithm Design (like writing invariants) is more art than science.

We’ll do a little bit of designing our own algorithms
- Take CSE 417 (usually runs in Winter) for more

Mostly we’ll understand how existing algorithms work

Understand their pros and cons
- Design decisions!

Practice how to apply those algorithms to solve problems

CSE 373 19 SU - ROBBIE WEBER 8

Algorithm Design Patterns

Algorithms don’t just come out of thin air.

There are common patterns we use to design new algorithms.

Many of them are applicable to sorting (we’ll see more patterns later in the quarter)

Invariants/Iterative improvement
- Step-by-step make one more part of the input your desired output.

Using data structures
- Speed up our existing ideas

Divide and conquer
- Split your input

- Solve each part (recursively)

- Combine solved parts into a single

CSE 373 19 SU - ROBBIE WEBER 9

Principle 1

Invariants/Iterative improvement
- Step-by-step make one more part of the input your desired output.

We’ll write iterative algorithms to satisfy the following invariant:

After 𝑘 iterations of the loop, the first 𝑘 elements of the array will be sorted.

CSE 373 19 SU - ROBBIE WEBER 10

Insertion Sort

0 1 2 3 4 5 6 7 8 9

2 3 6 7 5 1 4 10 2 8

11

Sorted Items Unsorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

https://www.youtube.com/watch?v=ROalU379l3U

CSE 373 19 SU - ROBBIE WEBER

https://www.youtube.com/watch?v=ROalU379l3U

Insertion Sort

CSE 373 19 SU - ROBBIE WEBER 12

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

public void insertionSort(collection) {

for (entire list)

if(currentItem is smaller than largestSorted)

int newIndex = findSpot(currentItem);

shift(newIndex, currentItem);

}

public int findSpot(currentItem) {

for (sorted list going backwards)

if (spot found) return

}

public void shift(newIndex, currentItem) {

for (i = currentItem > newIndex)

item[i+1] = item[i]

item[newIndex] = currentItem

}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

𝑂(𝑛2)

𝑂(𝑛)

Yes

Yes

𝑂(𝑛2)

pollEV.com/cse373su19

What are the best case
and worst case times?

Satisfying the invariant

We said this would be our invariant:

After 𝑘 iterations of the loop, the first 𝑘 elements of the array will be sorted.

But that wasn’t a full description of what happens

Insertion sort:

After 𝑘 iterations of the loop, the elements that started in indices 0,… , 𝑘 − 1 are now sorted

Selection sort:

After 𝑘 iterations of the loop, the 𝑘 smallest elements of the array are (sorted) in indices
0,… , 𝑘 − 1

CSE 373 19 SU - ROBBIE WEBER 13

Selection Sort

0 1 2 3 4 5 6 7 8 9

2 3 6 7 18 10 14 9 11 15

14

Sorted Items Unsorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 3 6 7 9 10 14 18 11 15

Sorted Items Unsorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 3 6 7 9 10 18 14 11 15

Sorted Items Unsorted Items
Current Item

https://www.youtube.com/watch?v=Ns4TPTC8whw

CSE 373 19 SU - ROBBIE WEBER

https://www.youtube.com/watch?v=Ns4TPTC8whw

Selection Sort

CSE 373 19 SU - ROBBIE WEBER 15

public void selectionSort(collection) {

for (entire list)

int newIndex = findNextMin(currentItem);

swap(newIndex, currentItem);

}

public int findNextMin(currentItem) {

min = currentItem

for (unsorted list)

if (item < min)

min = currentItem

return min

}

public int swap(newIndex, currentItem) {

temp = currentItem

currentItem = newIndex

newIndex = currentItem

}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

𝑂(𝑛2)

𝑂(𝑛2)

No

Yes

𝑂(𝑛2)

0 1 2 3 4 5 6 7 8 9

2 3 6 7 18 10 14 9 11 15

Sorted Items Unsorted ItemsCurrent Item

Principle 2

Selection sort:

After 𝑘 iterations of the loop, the 𝑘 smallest elements of the array are (sorted) in indices
0,… , 𝑘 − 1

Runs in Θ 𝑛2 time no matter what.

Using data structures

-Speed up our existing ideas

If only we had a data structure that was good at getting the smallest item remaining
in our dataset…

-We do!

CSE 373 19 SU - ROBBIE WEBER 16

Heap Sort

1. run Floyd’s buildHeap on your data

2. call removeMin n times

CSE 373 19 SU - ROBBIE WEBER 17

public void heapSort(collection) {

E[] heap = buildHeap(collection)

E[] output = new E[n]

for (n)

output[i] = removeMin(heap)

}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

No

𝑂(𝑛 log 𝑛)

https://www.youtube.com/watch?v=Xw2D9aJRBY4

https://www.youtube.com/watch?v=Xw2D9aJRBY4

In Place Heap Sort

CSE 373 19 SU - ROBBIE WEBER 18

0 1 2 3 4 5 6 7 8 9

1 4 2 14 15 18 16 17 20 22

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

22 4 2 14 15 18 16 17 20 1

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 4 16 14 15 18 22 17 20 1

Heap Sorted Items
Current Item

percolateDown(22)

In Place Heap Sort

CSE 373 19 SU - ROBBIE WEBER 19

public void inPlaceHeapSort(collection) {

E[] heap = buildHeap(collection)

for (n)

output[n – i - 1] = removeMin(heap)

}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

No

Yes

𝑂(𝑛 log 𝑛)

0 1 2 3 4 5 6 7 8 9

15 17 16 18 20 22 14 4 2 1

Heap Sorted Items
Current Item

Complication: final array is reversed! Lots of fixes:

- Run reverse afterwards (𝑂(𝑛))
- Use a max heap

- Reverse compare function to emulate max heap

Principle 3: Divide and Conquer

1. Divide your work into smaller pieces recursively
- Pieces should be smaller versions of the larger problem

2. Conquer the individual pieces
- Recursion!

- Until you hit the base case

3. Combine the results of your recursive calls

CSE 373 19 SU - ROBBIE WEBER 20

divideAndConquer(input) {

if (small enough to solve)

conquer, solve, return results

else

divide input into a smaller pieces

recurse on smaller piece

combine results and return

}

Merge Sort

CSE 373 19 SU - ROBBIE WEBER 21

https://www.youtube.com/watch?v=XaqR3G_NVoo

0 1 2 3 4 5 6 7 8 9

8 2 91 22 57 1 10 6 7 4

Divide

0 1 2 3 4

8 2 91 22 57

5 6 7 8 9

1 10 6 7 4

0 1 2 3 4

2 8 22 57 91

5 6 7 8 9

1 4 6 7 10

0 1 2 3 4 5 6 7 8 9

1 2 4 6 7 8 10 22 57 91

Combine

Sort the pieces through the magic of recursionmagic

https://www.youtube.com/watch?v=XaqR3G_NVoo

Merge Sort

CSE 373 19 SU - ROBBIE WEBER 22

mergeSort(input) {

if (input.length == 1)

return

else

smallerHalf = mergeSort(new [0, ..., mid])

largerHalf = mergeSort(new [mid + 1, ...])

return merge(smallerHalf, largerHalf)

}

0 1 2 3 4

8 2 57 91 22

0 1

8 2

0 1 2

57 91 22

0

8

0

2

0

57

0 1

91 22

0

91

0

22

0 1

22 91

0 1 2

22 57 91

0 1

2 8

0 1 2 3 4

2 8 22 57 91

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

1 if n<= 1

2T(n/2) + n otherwise

Yes

No

T(n) = = 𝑂(𝑛 log 𝑛)

Same

Same

Divide and Conquer

There’s more than one way to divide!

Mergesort:

Split into two arrays.
- Elements that just happened to be on the left and that happened to be on the right.

Quicksort:

Split into two arrays.
- Elements that are “small” and elements that are “large”

- What do I mean by “small” and “large” ?

Choose a “pivot” value (an element of the array)

One array has elements smaller than pivot, other has elements larger than pivot.

CSE 373 19 SU - ROBBIE WEBER 23

Quick Sort v1

Divide

Combine (no extra work if in-place)

CSE 373 19 SU - ROBBIE WEBER 24

0 1 2 3 4 5 6 7 8 9

8 2 91 22 57 1 10 6 7 4

0 1 2 3 4

2 1 6 7 4

0 1 2 3

91 22 57 10

0

8

0 1 2 3 4 5 6 7 8 9

1 2 4 6 7 8 10 22 57 91

https://www.youtube.com/watch?v=ywWBy6J5gz8

0 1 2 3 4

1 2 4 6 7

0 1 2 3

10 22 57 91

0

8

Sort the pieces through the magic of recursionmagic

https://www.youtube.com/watch?v=ywWBy6J5gz8

Quick Sort v1

CSE 373 19 SU - ROBBIE WEBER 25

0 1 2 3 4 5 6

20 50 70 10 60 40 30

0 1 2 3 4

50 70 60 40 30

0

10

0 1

40 30

0 1

70 60

0

30

0

60

0 1

30 40

0 1

60 70

0 1 2 3 4

30 40 50 60 70

0 1 2 3 4 5 6

10 20 30 40 50 60 70

quickSort(input) {

if (input.length == 1)

return

else

pivot = getPivot(input)

smallerHalf = quickSort(getSmaller(pivot, input))

largerHalf = quickSort(getBigger(pivot, input))

return smallerHalf + pivot + largerHalf

}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

1 if n<= 1

n + T(n - 1) otherwise
T(n) =

1 if n<= 1

n + 2T(n/2) otherwise
T(n) =

No

Can be done

= 𝑂 𝑛2

=𝑂(𝑛 log 𝑛)

Just trust me 𝑂(𝑛 log𝑛)

Quick Sort v2 (in-place)

CSE 373 19 SU - ROBBIE WEBER 26

0 1 2 3 4 5 6 7 8 9

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

6 1 4 9 0 3 5 2 7 8

Low

X < 6

High

X >= 6

0 1 2 3 4 5 6 7 8 9

6 1 4 2 0 3 5 9 7 8

Low

X < 6

High

X >= 60 1 2 3 4 5 6 7 8 9

5 1 4 2 0 3 6 9 7 8

Quick Sort v2 (in-place)

CSE 373 19 SU - ROBBIE WEBER 27

quickSort(input) {

if (input.length == 1)

return

else

pivot = getPivot(input)

smallerHalf = quickSort(getSmaller(pivot, input))

largerHalf = quickSort(getBigger(pivot, input))

return smallerHalf + pivot + largerHalf

}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

1 if n<= 1

n + 2T(n/2) otherwise
T(n) =

No

Yes

0 1 2 3 4 5 6 7 8 9

6 1 4 2 0 3 5 9 7 8

T(n) =
1 if n<= 1

n + T(n - 1) otherwise

= O(nlogn)

= O(nlogn)

= O(n^2)

Just trust me

Can we do better?

We’d really like to avoid hitting the worst case.

Key to getting a good running time, is always cutting the array (about) in half.

How do we choose a good pivot?

Here are four options for finding a pivot. What are the tradeoffs?

-Just take the first element

-Take the median of the first, last, and middle element

-Take the median of the full array

-Pick a random element as a pivot

CSE 373 19 SU - ROBBIE WEBER 28

Pivots

Just take the first element
- fast to find a pivot

- But (e.g.) nearly sorted lists get Ω 𝑛2 behavior overall

Take the median of the first, last, and middle element
- Guaranteed to not have the absolute smallest value.

- On real data, this works quite well…

- But worst case is still Ω(𝑛2)

Take the median of the full array
- Can actually find the median in 𝑂(𝑛) time (google QuickSelect). It’s complicated.

- 𝑂(𝑛 𝑙𝑜𝑔 𝑛) even in the worst case….but the constant factors are awful. No one does quicksort this way.

Pick a random element as a pivot
- somewhat slow constant factors

- Get 𝑂(𝑛 log𝑛) running time with probability at least 1 − 1/𝑛2

- “adversaries” can’t make it more likely that we hit the worst case.

CSE 373 19 SU - ROBBIE WEBER 29

Median of three is a common

choice in practice

