
Lecture 14: buildHeap
and Midterm Review

CSE 373 Data Structures and

Algorithms

1CSE 373 19 SP - KASEY CHAMPION

Administrivia

Exercise 3 3d (give an insertion order to cause failed probes) has been changed.

We now require only 4 failed probes not 5.

There is a way to get 5, but the hint wasn’t leading you to an answer that gives 5 failures.

Sorry

Section handouts and solutions for tomorrow are published

More Priority Queue Operations

Warm up

We said the height of a heap is always Θ(log 𝑛) .

Let’s argue why:

How many nodes are there in a complete binary tree of height ℎ?

If you have 𝑛 nodes in a heap, what can you say about the height?

Above the last level: σ𝑖=0
ℎ−12𝑖

At the last level: between 1 and 2ℎ
Total? Min:1 + σ𝑖=0

ℎ−12𝑖 = 2ℎ

Max: 2ℎ + σ𝑖=0
ℎ−12𝑖 = 2ℎ + 2ℎ − 1 = 2ℎ+1 − 1

2ℎ ≤ 𝑛 < 2ℎ+1

ℎ ≤ log2 𝑛 < ℎ + 1
ℎ ∈ Θ(log 𝑛)

We can actually write something more specific: ℎ = log𝑛

More Operations

We’ll use priority queues for lots of things
later in the quarter.

Let’s add them to our ADT now.

Some of these will be asymptotically faster for
a heap than an AVL tree!

BuildHeap(elements 𝑒1, … , 𝑒𝑛)

Given 𝑛 elements, create a heap
containing exactly those 𝑛 elements.

Min Priority Queue ADT

removeMin() – returns the element

with the smallest priority, removes

it from the collection

state

behavior

Set of comparable values

- Ordered based on “priority”

peekMin() – find, but do not

remove the element with the

smallest priority

insert(value) – add a new

element to the collection

Even More Operations

BuildHeap(elements 𝑒1, … , 𝑒𝑛) – Given 𝑛 elements, create a heap
containing exactly those 𝑛 elements.

Try 1: Just call insert 𝑛 times.

Worst case running time?

𝑛 calls, each worst case Θ(log 𝑛). So it’s Θ(𝑛 log 𝑛) right?

That proof isn’t valid. There’s no guarantee that we’re getting the worst
case every time!

Proof is right if we just want an 𝑂() bound
-But it’s not clear if it’s tight.

CSE 332 - SU 18 ROBBIE WEBER 6

BuildHeap Running Time

Let’s try again for a Theta bound.

The problem last time was making sure we always hit the worst case.

Suppose our priorities are 1,2,3, … , 𝑛 what is the worst-case order?

Insert the elements in decreasing order to hit the worst case each time!
-Every node will have to percolate all the way up to the root.

So we really have 𝑛 Θ(log 𝑛) operations. Done?

There’s still a bug with this proof!

CSE 332 - SU 18 ROBBIE WEBER 7

pollEV.com/cse373su19

What order produces
the worst case?

BuildHeap Running Time (again)

Let’s try once more.

Saying the worst case was decreasing order was a good start.

What are the actual running times?

It’s Θ(ℎ), where ℎ is the current height.
-The tree isn’t height log 𝑛 at the beginning.

But most nodes are inserted in the last two levels of the tree.
-For most nodes, ℎ is Θ log𝑛 .

The number of operations is at least
𝑛

2
⋅ Ω(log 𝑛) = Ω 𝑛 log 𝑛 .

CSE 332 - SU 18 ROBBIE WEBER 8

Where Were We?

We were trying to design an algorithm for:

BuildHeap(elements 𝑒1, … , 𝑒𝑛) – Given 𝑛 elements, create a heap
containing exactly those 𝑛 elements.

Just inserting leads to a Θ(𝑛 log 𝑛) algorithm in the worst case.

Can we do better?

CSE 332 - SU 18 ROBBIE WEBER 9

Can We Do Better?

What’s causing the 𝑛 insert strategy to take so long?

Most nodes are near the bottom, and they might need to percolate all
the way up.

What if instead we dumped everything in the array and then

tried to percolate things down to fix the invariant?

Seems like it might be faster
-The bottom two levels of the tree have Ω(𝑛) nodes, the top two have 3 nodes.

-Maybe we can make “most nodes” go a constant distance.

CSE 332 - SU 18 ROBBIE WEBER 10

Is It Really Faster?

Assume the tree is perfect
- the proof for complete trees just gives a different constant factor.

percolateDown() doesn’t take log 𝑛 steps each time!

Half the nodes of the tree are leaves
-Leaves run percolate down in constant time

1/4 of the nodes have at most 1 level to travel

1/8 the nodes have at most 2 levels to travel

etc…

work(n) ≈
𝑛

2
⋅ 1 +

𝑛

4
⋅ 2 +

𝑛

8
⋅ 3 + ⋯+ 1 ⋅ (log 𝑛)

CSE 373 SP 18 - KASEY CHAMPION 11

Closed form Floyd’s buildHeap

𝑛/2⋅ 1 +𝑛/4⋅ 2 +𝑛/8⋅ 3 +⋯+1⋅(log 𝑛)

factor out n

work(n) ≈𝑛
1

2
+

2

4
+

3

8
+⋯+

log 𝑛

𝑛

CSE 373 SP 18 - KASEY CHAMPION 12

𝑤𝑜𝑟𝑘 𝑛 ≈ 𝑛෍

𝑖=1

?
𝑖

2𝑖

𝑤𝑜𝑟𝑘 𝑛 ≤ 𝑛෍

𝑖=1

logn 3
2

𝑖

2𝑖

𝑖𝑓 − 1 < 𝑥 < 1 𝑡ℎ𝑒𝑛෍

𝑖=0

∞

𝑥𝑖 =
1

1 − 𝑥
= 𝑥

Infinite geometric series

𝑤𝑜𝑟𝑘 𝑛 ≈ 𝑛෍

𝑖=1

logn
𝑖

2𝑖
≤ 𝑛෍

𝑖=0

∞
3

4

𝑖

= 𝑛 ∗ 4

find a pattern -> powers of 2 work(n) ≈ 𝑛
1

21
+

2

22
+

3

23
+⋯+

log 𝑛

2log 𝑛

? = upper limit should give last term

Floyd’s buildHeap runs in O(n) time!

Summation!

We don’t have a summation for this! Let’s make it look more like a summation we do know.

Floyd’s BuildHeap

Ok, it’s really faster.
But can we make it work?

It’s not clear what order to call the percolateDown’s in.

Should we start at the top or bottom? Will one percolateDown on
each element be enough?

Yes! If we start at the bottom and work up.

CSE 332 - SU 18 ROBBIE WEBER 13

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY CHAMPION 14

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

1. Add all values to array

2. percolateDown(parent) starting at last index

Build a tree with the values:

12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY CHAMPION 15

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

1. Add all values to array

2. percolateDown(parent) starting at last index

1. percolateDown level 3

2. percolateDown level 2

Build a tree with the values:

12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

7

10

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY

CHAMPION
16

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 157 6

1. Add all values to array

2. percolateDown(parent) starting at last index

1. percolateDown level 3

2. percolateDown level 2

3. percolateDown level 1

Build a tree with the values:

12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 102 9

7

10

2

11

3

5 6

11

keep percolating down

like normal here and swap 5 and 4

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY

CHAMPION
17

8

12

5

3

5

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 8 157 6

1. Add all values to array

2. percolateDown(parent) starting at last index

1. percolateDown level 3

2. percolateDown level 2

3. percolateDown level 1

4. percolateDown level 0

Build a tree with the values:

12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 4 113 102 9

7

10

23

4

2

12

6

11

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY

CHAMPION
18

8

12

5

3

5

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 8 1576

1. Add all values to array

2. percolateDown(parent) starting at last index

1. percolateDown level 3

2. percolateDown level 2

3. percolateDown level 1

4. percolateDown level 0

Build a tree with the values:

12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

124 113 102 9

7

10

23

4

2

6

1112

6

11

Even More Operations

These operations will be useful in a few weeks…

IncreaseKey(element,priority) Given an element of the heap and a new, larger
priority, update that object’s priority.

DecreaseKey(element,priority) Given an element of the heap and a new,
smaller priority, update that object’s priority.

Delete(element) Given an element of the heap, remove that element.

Should just be going to the right spot and percolating…

Going to the right spot is the tricky part.

In the programming projects, you’ll use a dictionary to find an element quickly.

CSE 332 - SU 18 ROBBIE WEBER 19

Midterm Review

Midterm Logistics

60 minutes

8.5 x 11 inch note page, front and back

Math identities sheet provided (posted on website)

We will be scanning your exams to grade…
- Try not to cram answers into margins or corners

- If you want us to look on the back, tell us *in each problem part* where you want us to look at the back.

We’ll mark some rows to not sit in during the exam
- So TAs can answer questions without climbing over anyone.

There aren’t enough seats for an empty spot between everyone…
- But still spread out.

21CSE 373 19 WI - KASEY CHAMPION

Asymptotic Analysis

CSE 373 SP 18 - KASEY CHAMPION 22

Asymptotic Analysis

asymptotic analysis – the process of mathematically representing the runtime of an
algorithm in relation to the size of the input
- Don’t care about constant factors or small 𝑛.

Two step process

1. Model – come up with a function to describe the running time

2. Analyze – compare runtime/input relationship across multiple algorithms/data structures
For which inputs will one perform better than the other?

23CSE 373 19 WI - KASEY CHAMPION

Code Modeling

public int mystery(int n) {

int result = 0;

for (int i = 0; i < n/2; i++) {

result++;

}

for (int i = 0; i < n/2; i+=2) {

result++;

}

result * 10;

return result;

}

24

𝑓 𝑛 = 3 +
3

4
𝑛

+1

+1

+1

+

1
+1

n/2

n/4

CSE 373 19 WI - KASEY CHAMPION

Code Modeling Example

public String mystery (int n) {

ChainedHashDictionary<Integer, Character> alphabet =

new ChainedHashDictionary<Integer, Character>();

for (int i = 0; i < 26; i++) {

char c = ‘a’ + (char)i;

alphabet.put(i, c);

}

DoubleLinkedList<Character> result = new DoubleLinkedList<Character>();

for (int i = 0; i < n; i += 2) {

char c = alphabet.get(i);

result.add(c);

}

String final = “”;

for (int i = 0; i < result.size(); i++) {

final += result.remove();

}

return final;

}

25CSE 373 19 WI - KASEY CHAMPION

+1

+1

+1

+1

+26

n/2

n/2

+26
+1

+1

𝑓 𝑛 = 4 + 26 + 27
𝑛

2
+
𝑛

2

Function growth

26

…but since both are linear

eventually look similar at large

input sizes

whereas h(n) has a distinctly

different growth rate

The growth rate for f(n) and

g(n) looks very different for

small numbers of input

But for very small input values

h(n) actually has a slower growth

rate than either f(n) or g(n)

Imagine you have three possible algorithms to choose between.

Each has already been reduced to its mathematical model 𝑓 𝑛 = 𝑛 𝑔 𝑛 = 4𝑛 ℎ 𝑛 = 𝑛2

𝑇 𝑛

𝑛

𝑇 𝑛

𝑛

𝑇 𝑛

𝑛

CSE 373 19 WI - KASEY CHAMPION

O, Ω, Θ Definitions

O(f(n)) is the “family” or “set” of all
functions that are dominated by f(n)
- f(n) ∈ O(g(n)) when f(n) <= g(n)

- The upper bound of an algorithm’s function

Ω(f(n)) is the family of all functions that
dominate f(n)
- f(n) ∈ Ω(g(n)) when f(n) >= g(n)

- The lower bound of an algorithm’s function

Θ(f(n)) is the family of functions that are
equivalent to f(n)
- We say f(n) ∈ Θ(g(n)) when both

- f(n) ∈ O(g(n)) and f(n) ∈ Ω (g(n)) are true

- A direct fit of an algorithm’s function

CSE 373 19 WI - KASEY CHAMPION 27

𝑓(𝑛) ∈ 𝑂(𝑔 𝑛) if there exist positive

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

𝑓(𝑛) ∈ Ω(𝑔 𝑛) if there exist positive

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0,

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) ∈ Θ(𝑔 𝑛) if

𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).

Big-Theta

Proving Domination

f(n) = 5(n + 2)

g(n) = 2n2

Find a c and n0 that show that f(n) ∈ O(g(n)).

28

𝑓(𝑛) ∈ 𝑂(𝑔 𝑛) if there exist positive

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

𝑓 𝑛 = 5 𝑛 + 2 = 5𝑛 + 10

5𝑛 + 10 ≤ 3 2n2 + 5(2n2) when n ≥ 1

10 ≤ 𝑐 ∙ 2n2 for c = 5 when n ≥ 1

5𝑛 ≤ 𝑐 ∙ 2n2 for c = 3 when n ≥ 1

5𝑛 + 10 ≤ 8 2n2 when n ≥ 1

𝑓 𝑛 ≤ 𝑐 ∙ 𝑔 𝑛 𝑤ℎ𝑒𝑛 𝑐 = 8 𝑎𝑛𝑑 𝑛0 = 1

CSE 373 19 WI - KASEY CHAMPION

O, Ω, Θ Examples

For the following functions give the simplest tight O bound

a(n) = 10logn + 5

b(n) = 3n – 4n

c(n) =
𝑛

2

For the above functions indicate whether the following are true or false

a(n) ∈ O(b(n))

a(n) ∈ O(c(n))

a(n) ∈ Ω(b(n))

a(n) ∈ Ω(c(n))

a(n) ∈ Θ(b(n))

a(n) ∈ Θ(c(n))

a(n) ∈ Θ(a(n))

CSE 373 19 WI - KASEY CHAMPION 29

O(logn)

O(3n)

O(n)

TRUE

TRUE

FALSE

FALSE

FALSE

FALSE

TRUE

b(n) ∈ O(a(n))

b(n) ∈ O(c(n))

b(n) ∈ Ω(a(n))

b(n) ∈ Ω(c(n))

b(n) ∈ Θ(a(n))

b(n) ∈ Θ(c(n))

b(n) ∈ Θ(b(n))

FALSE

FALSE

TRUE

TRUE

FALSE

FALSE

TRUE

c(n) ∈ O(b(n))

c(n) ∈ O(a(n))

c(n) ∈ Ω(b(n))

c(n) ∈ Ω(a(n))

c(n) ∈ Θ(b(n))

c(n) ∈ Θ(a(n))

c(n) ∈ Θ(c(n))

TRUE

FALSE

FALSE

TRUE

FALSE

FALSE

TRUE

Review: Complexity Classes

complexity class – a category of algorithm efficiency based on the algorithm’s
relationship to the input size N

CSE 373 SP 18 - KASEY CHAMPION 30

Class Big O If you double N… Example algorithm

constant O(1) unchanged Add to front of

linked list

logarithmic O(log2n) Increases slightly Binary search

linear O(n) doubles Sequential search

“n log n” O(nlog2n) Slightly more

than doubles

Merge sort

quadratic O(n2) quadruples Nested loops

traversing a 2D array

cubic O(n3) Multiplies by 8 Triple nested loop

polynomial O(nc)

exponential O(cn) Multiplies

drastically

http://bigocheatsheet.com/

http://bigocheatsheet.com/

Modeling Complex Loops

for (int i = 0; i < n; i++) {

for (int j = 0; j < i; j++) {

System.out.println(“Hello!”);

}

}

CSE 373 19 WI - KASEY CHAMPION 31

+1 0 + 1 + 2 + 3 +…+ n-1 n

Summation

1 + 2 + 3 + 4 +… + n =
෍

𝑖=1

𝑛

𝑖

= f(a) + f(a + 1) + f(a + 2) + … + f(b-2) + f(b-1) + f(b)

Definition: Summation

෍

𝑖=𝑎

𝑏

𝑓(𝑖)

T(n) =

+c

෍

𝑖=0

𝑛−1

෍

𝑗=0

𝑖−1

𝑐

Function Modeling: Recursion

public int factorial(int n) {

if (n == 0 || n == 1) {

return 1;

} else {

return n * factorial(n – 1);

}

CSE 373 19 WI - KASEY CHAMPION 32

+2

+T(n-1)

+2

2

3 + T(n-1)T(n) =
when n = 0 or 1

otherwise

Mathematical equivalent of an if/else statement

f(n) =

Definition: Recurrence

ቊ
𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑜𝑓 𝑏𝑎𝑠𝑒 𝑐𝑎𝑠𝑒 𝑤ℎ𝑒𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙
𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑜𝑓 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑐𝑎𝑠𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Tree Method Formulas

How much work is done by recursive levels (branch nodes)?
1. How many recursive calls are on the i-th level of the tree?

- i = 0 is overall root level

2. At each level i, how many inputs does a single node process?

3. What is the last level?

- Based on the pattern of how we get down to base case

How much work is done by the base case level (leaf nodes)?
1. How much work is done by a single leaf node?

2. How many leaf nodes are there?

CSE 373 SP 18 - KASEY CHAMPION 33

𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑤𝑜𝑟𝑘 = ෍

𝑖=0

𝑙𝑎𝑠𝑡 𝑙𝑒𝑣𝑒𝑙−1

𝑏𝑟𝑎𝑛𝑐ℎ𝑁𝑢𝑚 𝑖 𝑏𝑟𝑎𝑛𝑐ℎ𝑊𝑜𝑟𝑘(𝑖)

𝑁𝑜𝑛𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑤𝑜𝑟𝑘 = 𝑙𝑒𝑎𝑓𝑊𝑜𝑟𝑘 × 𝑙𝑒𝑎𝑓𝐶𝑜𝑢𝑛𝑡 = 𝑙𝑒𝑎𝑓𝑊𝑜𝑟𝑘 × 𝑏𝑟𝑎𝑛𝑐ℎ𝑁𝑢𝑚𝑛𝑢𝑚𝐿𝑒𝑣𝑒𝑙𝑠

𝑇 𝑛 =
1 𝑤ℎ𝑒𝑛 𝑛 ≤ 1

2𝑇
𝑛

2
+ 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

numberNodesPerLevel(i) = 2i

inputsPerRecursiveCall(i) = (n/ 2i)

i= log2n

𝑇(𝑛 > 1) = ෍

𝑖=0

log2 𝑛−1

2𝑖
𝑛

2𝑖

leafWork = 1
leafCount = 2log

2
n = n

𝑇 𝑛 ≤ 1 = 1 2𝑙𝑜𝑔2
𝑛 = 𝑛

𝑇 𝑛 = ෍

𝑖=0

log2 𝑛−1

2𝑖
𝑛

2𝑖
+ 𝑛 = 𝑛 log2 𝑛 + 𝑛𝑡𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑘 = 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑤𝑜𝑟𝑘 + 𝑛𝑜𝑛𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑤𝑜𝑟𝑘 =

Tree Method Example

34CSE 373 19 WI - KASEY CHAMPION

𝑇 𝑛 =
3 𝑤ℎ𝑒𝑛 𝑛 = 1

3𝑇
𝑛

3
+ 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Size of input at level i?

Number of nodes at level i?

How many nodes are on the bottom level?

What is the last level?

Total recursive work

How much work done in base case?3𝑖

𝑛

3𝑖

෍

𝑖=0

log3 𝑛 −1
𝑛

3𝑖
3𝑖 =n log3(𝑛)

log3(𝑛)

3𝑛

3log3(𝑛) = 𝑛

𝑇 𝑛 = 𝑛 log3(𝑛)+3𝑛

BST & AVL Trees

CSE 373 SP 18 - KASEY CHAMPION 35

Binary Search Trees

A binary search tree is a binary tree that contains comparable items such that for every
node, all children to the left contain smaller data and all children to the right contain larger
data.

CSE 373 SP 18 - KASEY CHAMPION 36

10

9 15

7 12 18

8 17

Meet AVL Trees

AVL Trees must satisfy the following properties:
- binary search tree: for all nodes, 𝑢, all keys in the left subtree must be smaller than 𝑢’s key and all keys in the

right subtree must be larger than 𝑢’s key.

- AVL condition: for all nodes, the difference between the height of the left subtree and the right subtree is at
most one. i.e. Math.abs(height(left subtree) – height(right subtree)) ≤ 1

AVL stands for Adelson-Velsky and Landis (the inventors of the data structure)

CSE 373 SP 18 - KASEY CHAMPION 37

AVL Cases

CSE 373 SP 18 - KASEY CHAMPION 38

1

3

2

1

2

3

Line Case

Solve with 1 rotation

Kink Case

Solve with 2 rotations

3

2

1

Rotate Right

Parent’s left becomes child’s right

Child’s right becomes its parent

Rotate Left

Parent’s right becomes child’s left

Child’s left becomes its parent

3

1

2

Right Kink

Resolution

Rotate subtree right

Rotate root tree left

Left Kink Resolution

Rotate subtree left

Rotate root tree right

Rebalancing Steps

1. Recurse up the tree until you find the lowest imbalanced node, 𝑢.

2. From 𝑢, take two steps toward where the insertion happened.
- i.e. toward the tallest subtree.

- Call the two nodes you visited 𝑣, 𝑤

3. Both steps same direction?
- Single rotation with 𝑢, 𝑣, 𝑤

4. steps going different directions?
- Double rotation!

- Start by rotating, 𝑣, 𝑤 and the child of 𝑤 in a line with 𝑣 and 𝑤. Rotate so 𝑢, 𝑣, 𝑤 are in a line

- Now rotate 𝑢, 𝑣, 𝑤 the other way to create balance.

Remember to reconnect orphaned subtrees in BST order.

BST/AVL true/false

Which of the following is true for BSTs and for AVL trees?

BSTs AVL

All leaves are distance Ω(log 𝑛) from the root False True

Traversal takes Θ 𝑛 time True True

containsKey is 𝑂 𝑛 worst case True True (only technically – it’s Θ(log 𝑛))

Hashing

CSE 373 SP 18 - KASEY CHAMPION 41

Implement First Hash Function

public V get(int key) {

int newKey = getKey(key);

this.ensureIndexNotNull(key);

return this.data[key].value;

}

public void put(int key, int value) {

this.array[getKey(key)] = value;

}

public void remove(int key) {

int newKey = getKey(key);

this.entureIndexNotNull(key);

this.data[key] = null;

}

public int getKey(int value) {

return value % this.data.length;

}

42

SimpleHashMap<Integer>

put mod key by table size, put item at

result

get mod key by table size, get item at

result

containsKey mod key by table size,

return data[result] == null remove mod

key by table size, nullify element at

result

size return count of items in

dictionary

state

behavior

Data[]

size

CSE 373 SP 18 - KASEY CHAMPION

First Hash Function: % table size

indices 0 1 2 3 4 5 6 7 8 9

element

s

43

put(0, “foo”);

put(5, “bar”);

put(11, “biz”)

put(18, “bop”);

put(20, “:(”); Collision!

“foo”

0 % 10 = 0

5 % 10 = 5

11 % 10 = 1

18 % 10 = 8

20 % 10 = 0

“bop”“bar”“biz”“:(”

CSE 373 SP 18 - KASEY CHAMPION

Handling Collisions

Solution 1: Chaining

Each space holds a “bucket” that can store multiple
values. Bucket is often implemented with a LinkedList

44

Operation Array w/ indices as keys

put(key,value)

best O(1)

In-practice O(1 + λ)

worst O(n)

get(key)

best O(1)

In-practice O(1 + λ)

worst O(n)

remove(key)

best O(1)

In-practice O(1 + λ)

worst O(n)

In-Practice Case:

Depends on average number of

elements per chain

Load Factor λ

If n is the total number of key-

value pairs

Let c be the capacity of array

Load Factor λ =
𝑛

𝑐

CSE 373 SP 18 - KASEY CHAMPION

Handling Collisions

Solution 2: Open Addressing

Resolves collisions by choosing a different location to tore a value if natural choice is
already full.

CSE 373 SP 18 - KASEY CHAMPION 45

Type 1: Linear Probing

If there is a collision, keep checking the next element
until we find an open spot.
public int hashFunction(String s)

int naturalHash = this.getHash(s);

if(natural hash in use) {

int i = 1;

while (index in use) {

try (naturalHash + i);

i++;

Type 2: Quadratic Probing

If we collide instead try the next i2 space

public int hashFunction(String s)

int naturalHash = this.getHash(s);

if(natural hash in use) {

int i = 1;

while (index in use) {

try (naturalHash + i * i);

i++;

Linear Probing

0 1 2 3 4 5 6 7 8 9

CSE 373 SP 18 - KASEY CHAMPION 46

Insert the following values into the Hash Table using a hashFunction of % table size

and linear probing to resolve collisions

1, 5, 11, 7, 12, 17, 6, 25

1 511 712 17625

Quadratic Probing

CSE 373 SP 18 - KASEY CHAMPION 47

0 1 2 3 4 5 6 7 8 9

(49 % 10 + 0 * 0) % 10 = 9

(49 % 10 + 1 * 1) % 10 = 0

(58 % 10 + 0 * 0) % 10 = 8

(58 % 10 + 1 * 1) % 10 = 9

(58 % 10 + 2 * 2) % 10 = 2

8918 49

Insert the following values into the Hash Table using a hashFunction of % table size

and quadratic probing to resolve collisions

89, 18, 49, 58, 79

58 79

(79 % 10 + 0 * 0) % 10 = 9

(79 % 10 + 1 * 1) % 10 = 0

(79 % 10 + 2 * 2) % 10 = 3

Problems:

If λ≥ ½ we might never find an empty spot

Infinite loop!

Can still get clusters

Handling Collisions

public int hashFunction(String s)

int naturalHash = this.getHash(s);

if(natural hash in use) {

int i = 1;

while (index in use) {

try (naturalHash + i * jump_Hash(key));

i++;

CSE 373 SP 18 - KASEY CHAMPION 48

Solution 3: Double Hashing

If the natural hash location is taken, apply a second and separate hash function to find a
new location. h’(k, i) = (h(k) + i * g(k)) % T

Homework

CSE 373 SP 18 - KASEY CHAMPION 49

Homework 2

ArrayDictionary<K, V>

50CSE 373 19 WI - KASEY CHAMPION

Function Best case Worst case

get(K key) O(1)

Key is first item looked at

O(n)

Key is not found

put(K key, V value) O(1)

Key is first item looked at

2n -> O(n)

N search, N resizing

remove(K key) O(1)

Key is first item looked at

O(n)

N search, C swapping

containsKey(K key) O(1)

Key is first item looked at

O(n)

Key is not found

size() O(1)

Return field

O(1)

Return field

DoubleLinkedList<T>

Function Best case Worst case

get(int index) O(1)

Index is 0 or size

n/2 -> O(n)

Index is size/2

add(T item) O(1)

Item added to back

O(1)

Item added to back

remove() O(1)

Item removed from back

O(1)

Item removed from

back

delete(int index) O(1)

Index is 0 or size

n/2 -> O(n)

Index is size/2

set(int index, T

item)

O(1)

Index is 0 or size

n/2 -> O(n)

Index is size/2

insert(int index, T

item)

O(1)

Index is 0 or size

n/2 -> O(n)

Index is size/2

