
Lecture 13: Heaps CSE 373 Data Structures and

Algorithms

1CSE 373 19 SP - KASEY CHAMPION

Administrivia

We’ll post midterm review material tonight.

In the meantime, go to the bottom of spring’s exam page.

https://courses.cs.washington.edu/courses/cse373/19sp/exams/

CSE 373 SP 18 - KASEY CHAMPION 2

https://courses.cs.washington.edu/courses/cse373/19sp/exams/

Heaps

CSE 373 SP 18 - KASEY CHAMPION 3

Priority Queue ADT

Min Priority Queue ADT

removeMin() – returns the element

with the smallest priority, removes

it from the collection

state

behavior

Set of comparable values

- Ordered based on “priority”

peekMin() – find, but do not

remove the element with the

smallest priority

insert(value) – add a new

element to the collection

Imagine you’re writing a patient

management system for an ER.

You need to make sure when a

doctor becomes available the

person who most urgently needs

help is seen first.

Other uses:

• Operating System

• Well-designed printers

• Huffman Codes (in 143)

• Sorting (in Project 2)

• Graph algorithms

CSE 332 SU 18 - ROBBIE WEBER 4

Priority Queue ADT

CSE 373 SP 18 - KASEY CHAMPION 5

Min Priority Queue ADT

removeMin() – returns the

element with the smallest

priority, removes it from the

collection

state

behavior

Set of comparable values

- Ordered based on

“priority”

peekMin() – find, but do

not remove the element

with the smallest priority

insert(value) – add a new

element to the collection

Max Priority Queue ADT

removeMax() – returns the

element with the largest

priority, removes it from the

collection

state

behavior

Set of comparable values

- Ordered based on

“priority”

peekMax() – find, but do

not remove the element

with the largest priority

insert(value) – add a new

element to the collection

If a Queue is “First-In-First-Out” (FIFO) Priority

Queues are “Most-Important-Out-First”

Items in Priority Queue must be comparable,

The data structure will maintain some amount of

internal sorting

Implementing Priority Queues: Take I

Implementation Insert removeMin Peek

Unsorted Array

Sorted Array

(use “circular array”)

Linked List (sorted)

AVL Tree

Maybe we already know how to implement a priority queue.

How long would insert and removeMin take with these data structures?

For Array implementations, assume you do not need to resize.

Other than this assumption, do worst case analysis.

CSE 332 SU 18 - ROBBIE WEBER 6

Implementing Priority Queues: Take I

Implementation Insert removeMin Peek

Unsorted Array Θ(1) Θ(𝑛) Θ(𝑛)

Sorted Array

(use “circular array”)

Θ(𝑛) Θ(1) Θ(1)

Linked List (sorted) Θ(𝑛) Θ(1) Θ(1)

AVL Tree Θ(log𝑛) Θ(log 𝑛) Θ(log 𝑛)

Maybe we already know how to implement a priority queue.

How long would insert and removeMin take with these data structures?

For Array implementations, assume you do not need to resize.

Other than this assumption, do worst case analysis.

CSE 332 SU 18 - ROBBIE WEBER 7

Implementing Priority Queues: Take I

Implementation Insert removeMin Peek

Unsorted Array Θ(1) Θ(𝑛) Θ 𝑛 Θ(1)

Sorted Array

(use “circular array”)

Θ(𝑛) Θ(1) Θ(1)

Linked List (sorted) Θ(𝑛) Θ(1) Θ(1)

AVL Tree Θ(log𝑛) Θ(log 𝑛) Θ(log 𝑛) Θ(1)

Maybe we already know how to implement a priority queue.

How long would insert and removeMin take with these data structures?

Add a class variable to keep track of the min.

Update on every insert or remove.

CSE 332 SU 18 - ROBBIE WEBER 8

Let’s start with an AVL tree

There’s a technical issue:

Priority Queues allow for repeated priorities, AVL trees don’t

“easy” to fix
- Can add a custom compareTo that arbitrarily breaks ties.

- Or just weaken the BST invariant to allow for ties.

Implementing heaps with AVL trees isn’t a crazy idea.

We’re going to introduce another one, but keep this baseline
in your mind.

Whatever we come up with, it has to be better than this.

CSE 373 19 SP - KASEY CHAMPION 9

AVLPriorityQueue<E>

removeMin() – traverse

through tree all the way to

the left, remove node,

rebalance if necessary

state

behavior

overallRoot

peekMin() – traverse through

tree all the way to the left

insert() – traverse through

tree, insert node in open

space, rebalance as

necessary

Heaps

Idea:

In a BST, we organized the data to find anything quickly.

Now we just want to find the smallest things fast, so let’s write a different invariant:

In particular, the smallest node is at the root!
- Super easy to peek now!

Do we need more invariants?

Heap invariant

Every node is less than or equal to both of its children.

Heaps

With the current definition we could still have degenerate trees.

The AVL condition was a bit complicated to maintain.
- Because we had to make sure when we inserted we could maintain the exact BST structure

The heap invariant is looser than the BST invariant.
- Which means we can make our structure invariant stricter.

A tree is complete if:
- Every row, except possibly the last, is completely full.

- The last row is filled from left to right (no “gap”)

Heap structure invariant:

A heap is always a complete tree.

Tree Words

Complete – every row is completely filled, except possibly the last row, which is filled from
left to right.

Perfect – every row is completely filled

CSE 332 SU 18 - ROBBIE WEBER 12

2

58

46

9

5

4 2

58

46 5

4 2

58

46

9

5

4

2

Complete, but not perfect Neither Both Perfect and Complete

Binary Heap

One flavor of heap is a binary heap.

1. Binary Tree: every node has at most 2
children

2. Heap: every node is smaller than its
child

CSE 373 SP 18 - KASEY CHAMPION 13

8

9 10 2

4 5

3

6 7

1

3. Structure: Each level is “complete” meaning it

has no “gaps”

- Heaps are filled up left to right

22

36 47

2

4

8 9 10

3

1

5

Self Check - Are these valid heaps?

CSE 373 SP 18 - KASEY CHAMPION 14

Binary Heap Invariants:

1. Binary Tree

2. Heap

3. Complete

2

3

5

7 8

4

9 11 10

7

9 8

5

6

4

3

7

1

6

INVALID

INVALID

VALID

3 Minutes

Implementing peekMin()

CSE 373 SP 18 - KASEY CHAMPION 15

4

5 8

7

10

2

9

11 13

Runtime: 𝚯(1)

Implementing removeMin()

CSE 373 SP 18 - KASEY CHAMPION 16

4

5 8

7

10

2

9

11 13

4

5 8

7

10

13

9

11

Structure invariant restored, heap invariant broken

1.) Return min

2.) replace with last added

Implementing removeMin() - percolateDown

CSE 373 SP 18 - KASEY CHAMPION 17

4

5 8

7

10

13

9

11

4

135

13

13

11

Recursively swap parent with smallest child

until parent is smaller than both children

(or we’re at a leaf).

3.) percolateDown()

Structure invariant restored, heap invariant restored

What’s the running time?

Have to:

Find last element

Move it to top spot

Swap until invariant restored

Practice: removeMin()

CSE 373 SP 18 - KASEY CHAMPION 18

10

17 14

9

11

5

13

20 2216 15 2419 18

18

18

9

18

11

3 Minutes

Why does percolateDown swap with the smallest child instead of just any child?

If we swap 13 and 7, the heap invariant isn’t restored!

7 is greater than 4 (it’s not the smallest child!) so it will violate the invariant.

4

5 8

7

10

13

9

11

Implementing insert()

Algorithm:

-Insert a node to ensure no gaps

-Fix heap invariant

-percolate UP

i.e. swap with parent,

until your parent is

smaller than you

(or you’re the root).

CSE 373 19 SP - KASEY CHAMPION 20

4

5 8

7

10

2

9

11 13 3

3

8

3

4

Practice: Building a minHeap
Construct a Min Binary Heap by inserting the following values in this order:

5, 10, 15, 20, 7, 2

CSE 373 SP 18 - KASEY CHAMPION 21

Min Binary Heap Invariants

1. Binary Tree – each node has at most 2 children

2. Min Heap – each node’s children are larger than itself

3. Level Complete - new nodes are added from left to right completely filling each

level before creating a new one

10

20 7

15

2

5

percolateUp!

7

10

percolateUp!

2

15

percolateUp!

2

5

Min Priority Queue ADT

removeMin() – returns the element

with the smallest priority, removes it

from the collection

state

behavior

Set of comparable values

- Ordered based on “priority”

peekMin() – find, but do not remove

the element with the smallest priority

insert(value) – add a new element to

the collection

3 Minutes

minHeap runtimes

removeMin():
- remove root node

- Find last node in tree and swap to top level

- Percolate down to fix heap invariant

CSE 373 SP 18 - KASEY CHAMPION 22

insert():
- Insert new node into next available spot

- Percolate up to fix heap invariant

Finding the last node/next available spot is the hard part.

You can do it in Θ(log𝑛) time on complete trees, with some extra class variables…

But it’s NOT fun

And there’s a much better way!

Implementing Heaps

CSE 373 19 SP - KASEY CHAMPION 23

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J K L

Fill array in level-order from left to right

How do we find the minimum node?

How do we find the last node?

How do we find the next open space?

How do we find a node’s left child?

How do we find a node’s right child?

How do we find a node’s parent?

𝑝𝑎𝑟𝑒𝑛𝑡 𝑖 =
𝑖 − 1

2

𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 1

𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 2

𝑝𝑒𝑒𝑘𝑀𝑖𝑛() = 𝑎𝑟𝑟[0]

𝑙𝑎𝑠𝑡𝑁𝑜𝑑𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒 − 1]

𝑜𝑝𝑒𝑛𝑆𝑝𝑎𝑐𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒]

Heap Implementation Worst-Case Runtimes

CSE 373 SP 18 - KASEY CHAMPION 24

E

A

B

D

C

F

0 1 2 3 4 5 6 7

A B C D E F

Implementation Insert removeMin Peek

Array-based heap Θ(log 𝑛) Θ(log 𝑛) Θ(1)

We’ve matched the asymptotic behavior of AVL trees.

But we’re actually doing better!

The constant factors for array accesses are better.

The tree can be a constant factor shorter.

A heap is MUCH simpler to implement.

More Priority Queue Operations

More Operations

We’ll use priority queues for lots of things
later in the quarter.

Let’s add them to our ADT now.

Some of these will be asymptotically faster for
a heap than an AVL tree!

BuildHeap(elements 𝑒1, … , 𝑒𝑛)

Given 𝑛 elements, create a heap
containing exactly those 𝑛 elements.

Min Priority Queue ADT

removeMin() – returns the element

with the smallest priority, removes

it from the collection

state

behavior

Set of comparable values

- Ordered based on “priority”

peekMin() – find, but do not

remove the element with the

smallest priority

insert(value) – add a new

element to the collection

Even More Operations

BuildHeap(elements 𝑒1, … , 𝑒𝑛) – Given 𝑛 elements, create a heap
containing exactly those 𝑛 elements.

Try 1: Just call insert 𝑛 times.

Worst case running time?

𝑛 calls, each worst case Θ(log 𝑛). So it’s Θ(𝑛 log 𝑛) right?

That proof isn’t valid. There’s no guarantee that we’re getting the worst
case every time!

Proof is right if we just want an 𝑂() bound
-But it’s not clear if it’s tight.

CSE 332 - SU 18 ROBBIE WEBER 27

BuildHeap Running Time

Let’s try again for a Theta bound.

The problem last time was making sure we always hit the worst case.

If we insert the elements in decreasing order we will!
-Every node will have to percolate all the way up to the root.

So we really have 𝑛 Θ(log 𝑛) operations. QED.

There’s still a bug with this proof!

CSE 332 - SU 18 ROBBIE WEBER 28

BuildHeap Running Time (again)

Let’s try once more.

Saying the worst case was decreasing order was a good start.

What are the actual running times?

It’s Θ(ℎ), where ℎ is the current height.
-The tree isn’t height log 𝑛 at the beginning.

But most nodes are inserted in the last two levels of the tree.
-For most nodes, ℎ is Θ log𝑛 .

The number of operations is at least
𝑛

2
⋅ Ω(log 𝑛) = Ω 𝑛 log 𝑛 .

CSE 332 - SU 18 ROBBIE WEBER 29

Where Were We?

We were trying to design an algorithm for:

BuildHeap(elements 𝑒1, … , 𝑒𝑛) – Given 𝑛 elements, create a heap
containing exactly those 𝑛 elements.

Just inserting leads to a Θ(𝑛 log 𝑛) algorithm in the worst case.

Can we do better?

CSE 332 - SU 18 ROBBIE WEBER 30

Can We Do Better?

What’s causing the 𝑛 insert strategy to take so long?

Most nodes are near the bottom, and they might need to percolate all
the way up.

What if instead we dumped everything in the array and then

tried to percolate things down to fix the invariant?

Seems like it might be faster
-The bottom two levels of the tree have Ω(𝑛) nodes, the top two have 3 nodes.

-Maybe we can make “most nodes” go a constant distance.

CSE 332 - SU 18 ROBBIE WEBER 31

Is It Really Faster?

Assume the tree is perfect
- the proof for complete trees just gives a different constant factor.

percolateDown() doesn’t take log 𝑛 steps each time!

Half the nodes of the tree are leaves
-Leaves run percolate down in constant time

1/4 of the nodes have at most 1 level to travel

1/8 the nodes have at most 2 levels to travel

etc…

work(n) ≈
𝑛

2
⋅ 1 +

𝑛

4
⋅ 2 +

𝑛

8
⋅ 3 + ⋯+ 1 ⋅ (log 𝑛)

CSE 373 SP 18 - KASEY CHAMPION 32

Closed form Floyd’s buildHeap

𝑛/2⋅ 1 +𝑛/4⋅ 2 +𝑛/8⋅ 3 +⋯+1⋅(log 𝑛)

factor out n

work(n) ≈𝑛
1

2
+

2

4
+

3

8
+⋯+

log 𝑛

𝑛

CSE 373 SP 18 - KASEY CHAMPION 33

𝑤𝑜𝑟𝑘 𝑛 ≈ 𝑛

𝑖=1

?
𝑖

2𝑖

𝑤𝑜𝑟𝑘 𝑛 ≤ 𝑛

𝑖=1

logn 3
2

𝑖

2𝑖

𝑖𝑓 − 1 < 𝑥 < 1 𝑡ℎ𝑒𝑛

𝑖=0

∞

𝑥𝑖 =
1

1 − 𝑥
= 𝑥

Infinite geometric series

𝑤𝑜𝑟𝑘 𝑛 ≈ 𝑛

𝑖=1

logn
𝑖

2𝑖
≤ 𝑛

𝑖=0

∞
3

4

𝑖

= 𝑛 ∗ 4

find a pattern -> powers of 2 work(n) ≈ 𝑛
1

21
+

2

22
+

3

23
+⋯+

log 𝑛

2log 𝑛

? = upper limit should give last term

Floyd’s buildHeap runs in O(n) time!

Summation!

We don’t have a summation for this! Let’s make it look more like a summation we do know.

Floyd’s BuildHeap

Ok, it’s really faster.
But can we make it work?

It’s not clear what order to call the percolateDown’s in.

Should we start at the top or bottom? Will one percolateDown on
each element be enough?

CSE 332 - SU 18 ROBBIE WEBER 34

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY CHAMPION 35

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

1. Add all values to back of array

2. percolateDown(parent) starting at last index

Build a tree with the values:

12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY CHAMPION 36

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

1. Add all values to back of array

2. percolateDown(parent) starting at last index

1. percolateDown level 4

2. percolateDown level 3

Build a tree with the values:

12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

7

10

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY

CHAMPION
37

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 157 6

1. Add all values to back of array

2. percolateDown(parent) starting at last index

1. percolateDown level 4

2. percolateDown level 3

3. percolateDown level 2

Build a tree with the values:

12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 102 9

7

10

2

11

3

5 6

11

keep percolating down

like normal here and swap 5 and 4

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY

CHAMPION
38

8

12

5

3

5

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 8 157 6

1. Add all values to back of array

2. percolateDown(parent) starting at last index

1. percolateDown level 4

2. percolateDown level 3

3. percolateDown level 2

4. percolateDown level 1

Build a tree with the values:

12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 4 113 102 9

7

10

23

4

2

12

6

11

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY

CHAMPION
39

8

12

5

3

5

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 8 1576

1. Add all values to back of array

2. percolateDown(parent) starting at last index

1. percolateDown level 4

2. percolateDown level 3

3. percolateDown level 2

4. percolateDown level 1

Build a tree with the values:

12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

124 113 102 9

7

10

23

4

2

6

1112

6

11

Even More Operations

These operations will be useful in a few weeks…

IncreaseKey(element,priority) Given an element of the heap and a new, larger
priority, update that object’s priority.

DecreaseKey(element,priority) Given an element of the heap and a new,
smaller priority, update that object’s priority.

Delete(element) Given an element of the heap, remove that element.

Should just be going to the right spot and percolating…

Going to the right spot is the tricky part.

In the programming projects, you’ll use a dictionary to find an element quickly.

CSE 332 - SU 18 ROBBIE WEBER 40

