
Lecture 12:
Open Addressing

Data Structures and

Algorithms

CSE 373 19 SP - KASEY CHAMPION 1

Administrivia

Exercise 2 due tonight.

-Make sure you’re assigning pages properly please!

Exercise 3 out sometime tonight.

Midterm in one week!

For the midterm, you are allowed one 8.5”x11” sheet of paper (both sides) for notes

-I strongly recommend you handwrite your note sheet.

-But you are free to generate it with a computer if you prefer.

Idea for note sheet: in the real-world you can often google stuff,
write down what you would lookup. It should also help you study.

We will provide you identities, we’ll post the sheet in the exam resources early next week.

CSE 373 19 SP - KASEY CHAMPION 2

Midterm Topics (not exhaustive)

ADTs and Data structures
- Lists, Stacks, Queues, Dictionaries

- Array vs Node implementations of each

- Design decisions!

Asymptotic Analysis
- Proving Big O by finding 𝑐 and 𝑛0
- Modeling code runtime

- Finding closed form of recurrences using tree
method and master theorem

- Looking at code models and giving simplified tight
Big O runtimes

- Definitions of Big O, Big Omega, Big Theta

CSE 373 19 SP - KASEY CHAMPION 3

BST and AVL Trees
- Binary Search Property, Balance Property

- Insertions, Retrievals

- AVL rotations

Hashing
- Understanding hash functions

- Insertions and retrievals from a table

- Collision resolution strategies: chaining, linear
probing, quadratic probing, double hashing

Projects
- ArrayDictionary

- DoubleLinkedList

Resizing

Our running time in practice depends on 𝜆. What do we do when 𝜆 is
big?

Resize the array!
-Usually we double, that’s not quite the best idea here

-Increase array size to next prime number that’s roughly double the current size

-Prime numbers tend to redistribute keys, because you’re now modding by a
completely unrelated number.

-If % TableSize = 𝑘 then %2*TableSize gives either 𝑘 or 𝑘 +TableSize.

-Rule of thumb: Resize sometime around when λ is somewhere around
1 if you’re doing separate chaining.

-When you resize, you have to rehash everything!

CSE 373 SU 19 - ROBBIE WEBER 4

pollEV.com/cse373su19

Can we just copy over our
old chains?

Review: Handling Collisions

Solution 1: Chaining

Each space holds a “bucket” that can store multiple values. Bucket is often implemented
with a LinkedList

CSE 373 SP 18 - KASEY CHAMPION 6

Operation Array w/ indices as keys

put(key,value)

best O(1)

average O(1 + λ)

worst O(n)

get(key)

best O(1)

average O(1 + λ)

worst O(n)

remove(key)

best O(1)

average O(1 + λ)

worst O(n)

Average Case:

Depends on average number of

elements per chain

Load Factor λ
If n is the total number of key-

value pairs

Let c be the capacity of array

Load Factor λ =
𝑛

𝑐

Handling Collisions

Solution 2: Open Addressing

Resolves collisions by choosing a different location to store a value if natural choice is
already full.

Type 1: Linear Probing

If there is a collision, keep checking the next element until we find an open spot.
int findFinalLocation(Key s)

int naturalHash = this.getHash(s);

int index = natrualHash % TableSize;

while (index in use) {

i++;

index = (naturalHash + i) % TableSize;

}

return index;

CSE 373 SP 18 - KASEY CHAMPION 7

Linear Probing

0 1 2 3 4 5 6 7 8 9

CSE 373 SP 18 - KASEY CHAMPION 8

Insert the following values into the Hash Table using a hashFunction of % table size and

linear probing to resolve collisions

1, 5, 11, 7, 12, 17, 6, 25

1 511 712 17625

Linear Probing

CSE 373 SP 18 - KASEY CHAMPION 9

0 1 2 3 4 5 6 7 8 9

Insert the following values into the Hash Table using a hashFunction of % table size and

linear probing to resolve collisions

38, 19, 8, 109, 10

38 1988 10910

Problem:

• Linear probing causes clustering

• Clustering causes more looping when probing

Primary Clustering

When probing causes long chains of

occupied slots within a hash table

3 Minutes

Runtime

When is runtime good?

When we hit an empty slot
- (or an empty slot is a very short distance away)

When is runtime bad?

When we hit a “cluster”

Maximum Load Factor?

λ at most 1.0

When do we resize the array?

λ ≈ ½ is a good rule of thumb

CSE 373 SP 18 - KASEY CHAMPION 10

2 Minutes

Can we do better?

Clusters are caused by picking new space near natural index

Solution 2: Open Addressing

Type 2: Quadratic Probing

Instead of checking 𝑖 past the original location, check 𝑖2 from the original location.
int findFinalLocation(Key s)

int naturalHash = this.getHash(s);

int index = natrualHash % TableSize;

while (index in use) {

i++;

index = (naturalHash + i*i) % TableSize;

}

return index;

CSE 373 SP 18 - KASEY CHAMPION 11

Quadratic Probing

CSE 373 SP 18 - KASEY CHAMPION 12

0 1 2 3 4 5 6 7 8 9

(49 % 10 + 0 * 0) % 10 = 9

(49 % 10 + 1 * 1) % 10 = 0

(58 % 10 + 0 * 0) % 10 = 8

(58 % 10 + 1 * 1) % 10 = 9

(58 % 10 + 2 * 2) % 10 = 2

8918 49

Insert the following values into the Hash Table using a hashFunction of % table size and

quadratic probing to resolve collisions

89, 18, 49, 58, 79, 27

58 79

(79 % 10 + 0 * 0) % 10 = 9

(79 % 10 + 1 * 1) % 10 = 0

(79 % 10 + 2 * 2) % 10 = 3

Problems:

If λ≥ ½ we might never find an empty spot

Infinite loop!

Can still get clusters

27

Now try to insert 9.

Uh-oh

Quadratic Probing

There were empty spots. What gives?

Quadratic probing is not guaranteed to check every possible spot in the hash table.

The following is true:

Notice we have to assume 𝑝 is prime to get that guarantee.

If the table size is a prime number 𝑝, then the first 𝑝/2 probes check

distinct indices.

Secondary Clustering

CSE 373 SP 18 - KASEY CHAMPION 15

0 1 2 3 4 5 6 7 8 9

Insert the following values into the Hash Table using a hashFunction of % table size and

quadratic probing to resolve collisions

19, 39, 29, 9

39 29 199

Secondary Clustering

When using quadratic probing sometimes need

to probe the same sequence of table cells, not

necessarily next to one another

3 Minutes

Probing

- h(k) = the natural hash

- h’(k, i) = resulting hash after probing

- i = iteration of the probe

- T = table size

Linear Probing:

h’(k, i) = (h(k) + i) % T

Quadratic Probing

h’(k, i) = (h(k) + i2) % T

CSE 373 SP 18 - KASEY CHAMPION 16

Double Hashing

Probing causes us to check the same indices over and over- can we check different ones
instead?

Use a second hash function!

h’(k, i) = (h(k) + i * g(k)) % T

int findFinalLocation(Key s)

int naturalHash = this.getHash(s);

int index = natrualHash % TableSize;

while (index in use) {

i++;

index = (naturalHash + i*jumpHash(s)) % TableSize;

}

return index;

CSE 373 SP 18 - KASEY CHAMPION 17

<- Most effective if g(k) returns value relatively prime to table size

Second Hash Function

Effective if g(k) returns a value that is relatively prime to table size

-If T is a power of 2, make g(k) return an odd integer

-If T is a prime, make g(k) return anything except a multiple of the TableSize

CSE 373 SP 18 - KASEY CHAMPION 18

Resizing: Open Addressing

How do we resize? Same as separate chaining
-Remake the table

-Evaluate the hash function over again.

-Re-insert.

When to resize?
-Depending on our load factor 𝜆 AND our probing strategy.

-Hard Maximums:
- If 𝜆 = 1, put with a new key fails for linear probing.

- If 𝜆 > 1/2 put with a new key might fail for quadratic probing, even with a prime tableSize

- And it might fail earlier with a non-prime size.

- If 𝜆 = 1 put with a new key fails for double hashing

- And it might fail earlier if the second hash isn’t relatively prime with the tableSize

What are the running times for:

insert

Best: 𝑂(1)

Worst: 𝑂(𝑛) (we have to make sure the key isn’t already in the bucket.)

find

Best: 𝑂(1)

Worst: 𝑂(𝑛)

delete

Best: 𝑂(1)
Worst: 𝑂(𝑛)

Running Times

CSE 332 SU 18 – ROBBIE WEBER

In-Practice

For open addressing:

We’ll assume you’ve set 𝜆 appropriately, and that all the operations are Θ 1 .

The actual dependence on 𝜆 is complicated – see the textbook (or ask me in office hours)

And the explanations are well-beyond the scope of this course.

Summary

1. Pick a hash function to:
- Avoid collisions

- Uniformly distribute data

- Reduce hash computational costs

2. Pick a collision strategy
- Chaining

- LinkedList

- AVL Tree

- Probing

- Linear

- Quadratic

- Double Hashing

CSE 373 SP 18 - KASEY CHAMPION 22

No clustering

Potentially more “compact” (λ can be higher)

Managing clustering can be tricky

Less compact (keep λ < ½)

Array lookups tend to be a constant factor faster than traversing pointers

Summary

Separate Chaining
-Easy to implement

-Running times 𝑂(1 + 𝜆) in practice

Open Addressing
-Uses less memory (usually).

-Various schemes:

-Linear Probing – easiest, but lots of clusters

-Quadratic Probing – middle ground, but need to be more careful about 𝜆.

-Double Hashing – need a whole new hash function, but low chance of clustering.

Which you use depends on your application and what you’re worried
about.

Hash functions with some additional properties

Cryptographic hash functions: A small change in the key completely changes the hash.

-Commonly used in practice: SHA-1, SHA-265

-verify file integrity. When you share a large file with someone, how do you know that
the other person got the exact same file?

-Just compare hash of the file on both ends. Used by file sharing services (Google
Drive, Dropbox)

-For password verification: Storing passwords in plaintext is insecure. So your
passwords are stored as a hash.

-Digital signatures

-Lots of other crypto applications

Other Applications of Hashing

CSE 373 AU 18 – SHRI MARE 24

Other Applications of Hashing

Locality Sensitive Hashing – hash functions that map similar keys to similar hashes.

Finding similar records: Records with similar but not identical keys

-Spelling suggestion/corrector applications

-Audio/video fingerprinting

-Clustering

- Finding similar substrings in a large collection of strings

-Genomic databases

-Detecting plagiarism

- Geometric hashing: Widely used in computer graphics and computational
geometry

Extra optimizations

Idea 1: Take in better keys
-Really up to your client, but if you can control them, do!

Idea 2: Optimize the bucket
-Use an AVL tree instead of a Linked List

-Java starts off as a linked list then converts to AVL tree when buckets get large

Idea 3: Modify the array’s internal capacity
-When load factor gets too high, resize array

- Increase array size to next prime number that’s roughly double the array size

- Let the client fine-tune the 𝜆 that causes you to resize

CSE 373 SP 18 - KASEY CHAMPION 26

Wrap Up

Hash Tables:
-Efficient find, insert, delete in practice, under some assumptions

-Items not in sorted order

-Tons of real world uses

-…and really popular in tech interview questions.

Need to pick a good hash function.
-Have someone else do this if possible.

-Balance getting a good distribution and speed of calculation.

Resizing:
-Always make the table size a prime number.

-𝜆 determines when to resize, but depends on collision resolution strategy.

