
Lecture 11: Introduction
to Hash Tables

CSE 373: Data Structures and
Algorithms

CSE 373 SU 19 - ROBBIE WEBER 1

Administrivia
When you’re submitting your group writeup to gradescope, be sure to use the group submission
option if you have a partner.

Project 1 part 2 due Thursday night.

Exercise 2 due Friday night.

Project 2 will come out tonight, and Exercise 3 will come out Friday.

Due in two weeks (Wednesday the 31st for Project 2, and Friday the 2nd for Exercise 3)

They “should” be one week assignments… but next Friday is the midterm!

We’re leaving it to you to decide how/when to study for the midterm vs. doing homework.

CSE 373 SU 19 - ROBBIE WEBER 2

Aside: How Fast is Θ(log &)?
If you just looked at a list of common running times

You might think this was a small improvement.

It was a HUGE improvement!

Class Big O If you double N… Example algorithm

constant O(1) unchanged Add to front of linked list

logarithmic O(log n) Increases slightly Binary search

linear O(n) doubles Sequential search

“n log n” O(nlog n) Slightly more than
doubles

Merge sort

quadratic O(n2) quadruples Nested loops traversing a 2D
array

CSE 373 SU 19 - ROBBIE WEBER

Logarithmic vs. Linear
If you double the size of the input,
- A linear time algorithm takes twice as long.
- A logarithmic time algorithm has a constant additive increase to its running time.

To make a logarithmic time algorithm take twice as long, how much do you have to
increase ! by?

You have to square it log(!&) = 2 log(!) .
A gigabyte worth of integer keys can fit in an AVL tree of height 60.

It takes a ridiculously large input to make a logarithmic time algorithm go slowly.
Log isn’t “that running time between linear and constant” it’s “that running time that’s barely worse
than a constant.”

CSE 373 SU 19 - ROBBIE WEBER

pollEV.com/cse373su19
How do you increase !?

Logarithmic Running Times

This identity is so important,
one of my friends made me a
cross-stitch of it.

Two lessons:
1. Log running times are

REALLY REALLY FAST.
2. !(log &') is not

simplified, it’s just !(log &)

CSE 373 SU 19 - ROBBIE WEBER

Aside: Traversals
What if the heights of subtrees were corrupted.
How could we calculate from scratch?
We could use a “traversal”
- A process that visits every piece of data in a data structure.

int height(Node curr){
if(curr==null) return -1;
int h = Math.max(height(curr.left),height(curr.right));
return h+1;

}

CSE 373 SU 19 - ROBBIE WEBER

Three Kinds of Traversals
InOrder(Node curr){

InOrder(curr.left);
doSomething(curr);
InOrder(curr.right);

}

PreOrder(Node curr){
doSomething(curr);
PreOrder(curr.left);
PreOrder(curr.right);

}

PostOrder(Node curr){
PostOrder(curr.left);

PostOrder(curr.right);

doSomething(curr);

}
CSE 373 SU 19 - ROBBIE WEBER

Traversal Practice
For each of the following scenarios, choose an appropriate traversal:

1. Print out all the keys in an AVL-Dictionary in sorted order.

2. Make a copy of an AVL tree

3. Determine if an AVL tree is balanced (assume height values are not stored)

CSE 373 SU 19 - ROBBIE WEBER

Traversal Practice
For each of the following scenarios, choose an appropriate traversal:

1. Print out all the keys in an AVL-Dictionary in sorted order.

2. Make a copy of an AVL tree

3. Determine if an AVL tree is balanced (assume height values are not stored)

Pre-order

In order

Post-order

CSE 373 SU 19 - ROBBIE WEBER

Traversals

If we have ! elements, how long does it take to calculate height?
Θ(!) time.
The recursion tree (from the tree method) IS the AVL tree!

We do a constant number of operations at each node

In general, traversals take Θ ! ⋅ &(') time,

where doSomething()takes Θ & ' time.

Common question on technical interviews!

CSE 373 SU 19 - ROBBIE WEBER

Aside: Other Self-Balancing Trees
There are lots of flavors of self-balancing search trees
“Red-black trees” work on a similar principle to AVL trees.
“Splay trees”
-Get !(log &) amortized bounds for all operations.
“Scapegoat trees”
“Treaps” – a BST and heap in one (!)
B-trees (see other 373 versions) optimized for huge datasets.
If you have an application where you need a balanced BST that
also [does something] it might already exist.
Google first, you might be able to use a library.

CSE 373 SU 19 - ROBBIE WEBER

Hashing

CSE 373 SU 19 - ROBBIE WEBER 12

Review: Dictionaries

CSE 373 SU 19 - ROBBIE WEBER 13

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior
Set of items & keys
Count of items

ArrayDictionary<K, V>

put create new pair, add
to next available spot,
grow array if necessary
get scan all pairs
looking for given key,
return associated item if
found
containsKey scan all
pairs, return if key is
found
remove scan all pairs,
replace pair to be
removed with last pair in
collection
size return count of
items in dictionary

state

behavior

Pair<K, V>[] data

LinkedDictionary<K, V>

put if key is unused,
create new pair, add to
front of list, else
replace with new value
get scan all pairs
looking for given key,
return associated item if
found
containsKey scan all
pairs, return if key is
found
remove scan all pairs,
skip pair to be removed
size return count of
items in dictionary

state

behavior

front
size

AVLDictionary<K, V>

put if key is unused,
create new pair, place in
BST order, rotate to
maintain balance
get traverse through tree
using BST property,
return item if found
containsKey traverse
through tree using BST
property, return if key
is found
remove traverse through
tree using BST property,
replace or nullify as
appropriate
size return count of
items in dictionary

state

behavior

overallRoot
size

Review: Dictionaries
Why are we so obsessed with Dictionaries?

CSE 373 SU 19 - ROBBIE WEBER 14

3 Minutes

It’s all about data baby!Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior
Set of items & keys
Count of items

When dealing with data:
• Adding data to your collection
• Getting data out of your collection
• Rearranging data in your collection

Operation ArrayList LinkedList BST AVLTree

put(key,value)
best

worst

get(key)
best

worst

remove(key)
best

worst

SUPER common in comp sci
- Databases
- Network router tables
- Compilers and Interpreters

Review: Dictionaries
Why are we so obsessed with Dictionaries?

CSE 373 SU 19 - ROBBIE WEBER 15

3 Minutes

It’s all about data baby!Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior
Set of items & keys
Count of items

When dealing with data:
• Adding data to your collection
• Getting data out of your collection
• Rearranging data in your collection

Operation ArrayList LinkedList BST AVLTree

put(key,value)
best Θ(1) Θ(1) Θ(1) Θ(1)

worst Θ(n) Θ(n) Θ(n) Θ(logn)

get(key)
best Θ(1) Θ(1) Θ(1) Θ(1)

worst Θ(n) Θ(n) Θ(n) Θ(logn)

remove(key)
best Θ(1) Θ(1) Θ(1) Θ(logn)

worst Θ(n) Θ(n) Θ(n) Θ(logn)

SUPER common in comp sci
- Databases
- Network router tables
- Compilers and Interpreters

“In-Practice” Case
For Hash Tables, we’re going to talk about what you can expect “in-practice”
- Instead of just what the best and worst scenarios are.

Other resources (and previous versions of 373) use “average case”

There’s a lot of math (beyond the scope of the course) needed to make “average”
statements precise.
- So we’re not going to do it that way.

For this class, we’ll just tell you what assumptions we’re making about how the “real
world” usually works.

And then do worst-case analysis under those assumptions.

CSE 373 SU 19 - ROBBIE WEBER

Can we do better?
What if we knew exactly where to find our data?

Implement a dictionary that accepts only integer keys
between 0 and some value k
- -> Leverage Array Indices!

CSE 373 SU 19 - ROBBIE WEBER 17

Operation Array w/ indices as keys

put(key,value)
best O(1)

worst O(1)

get(key)
best O(1)

worst O(1)

remove(key)
best O(1)

worst O(1)

“Direct address map”

DirectAccessMap<Integer, V>

put put item at given index
get get item at given index
containsKey if data[] null at
index, return false, return
true otherwise
remove nullify element at index
size return count of items in
dictionary

state

behavior

Data[]
size

Implement Direct Access Map
public V get(int key) {

this.ensureIndexNotNull(key);
return this.array[key];

}

public void put(int key, V value) {
this.array[key] = value;

}

public void remove(int key) {
this.entureIndexNotNull(key);
this.array[key] = null;

}

CSE 373 SU 19 - ROBBIE WEBER 18

DirectAccessMap<Integer, V>

put put item at given index
get get item at given index
containsKey if data[] null at
index, return false, return true
otherwise
remove nullify element at index
size return count of items in
dictionary

state

behavior

Data[]
size

Can we do this for any integer?
Idea 1:
Create a GIANT array with every possible integer as
an index

Problems:
- Can we allocate an array big enough?
- Super wasteful

Idea 2:
Create a smaller array, but create a way to translate
given integer keys into available indices

Problem:
- How can we pick a good translation?

CSE 373 SU 19 - ROBBIE WEBER 19

202

5000

900007

1
2

202

5000

1

900007

0
indices

1

202

5000

900007

..

..

..

..

indices

1

202

5000

900007

1
2

0

7

202

900007

5000
1

2
3
4
5
6
7
8

1

9

0

Review: Integer remainder with % “mod”
The % operator computes the remainder from integer division.
14 % 4 is 2

3 43
4) 14 5) 218

12 20
2 18

15
3

Applications of % operator:
- Obtain last digit of a number: 230857 % 10 is 7
- See whether a number is odd: 7 % 2 is 1, 42 % 2 is 0
- Limit integers to specific range: 8 % 12 is 8, 18 % 12 is 6

CSE 142 SP 18 – BRETT WORTZMAN 20

218 % 5 is 3

For more review/practice, check out https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-modular-arithmetic

Limit keys to indices
within array

Equivalently, to find a % b (for a,b > 0):
while(a > b-1)

a -= b;
return a;

https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-modular-arithmetic

First Hash Function: % table size

indices 0 1 2 3 4 5 6 7 8 9

elements

CSE 373 SU 19 - ROBBIE WEBER 21

put(0, “foo”);
put(5, “bar”);
put(11, “biz”)
put(18, “bop”);

“foo”

0 % 10 = 0
5 % 10 = 5
11 % 10 = 1
18 % 10 = 8

“bop”“bar”“biz”

Implement First Hash Function
public V get(int key) {

int newKey = getKey(key);
this.ensureIndexNotNull(newKey);
return this.data[newKey;

}

public void put(int key, int value) {
this.array[getKey(key)] = value;

}
public void remove(int key) {

int newKey = getKey(key);
this.entureIndexNotNull(newKey);
this.data[newKey] = null;

}
public int getKey(int k) {

return k % this.data.length;
}

CSE 373 SU 19 - ROBBIE WEBER 22

SimpleHashMap<Integer>

put mod key by table size, put item at
result
get mod key by table size, get item at
result
containsKey mod key by table size,
return data[result] == null remove mod
key by table size, nullify element at
result
size return count of items in
dictionary

state

behavior

Data[]
size

First Hash Function: % table size

indices 0 1 2 3 4 5 6 7 8 9

elements

CSE 373 SU 19 - ROBBIE WEBER 23

put(0, “foo”);
put(5, “bar”);
put(11, “biz”)
put(18, “bop”);
put(20, “:(”); Collision!

“foo”

0 % 10 = 0
5 % 10 = 5
11 % 10 = 1
18 % 10 = 8

20 % 10 = 0

“bop”“bar”“biz”“:(”

Hash Obsession: Collisions

Collision: multiple keys translate to the same location of the array

The fewer the collisions, the better the runtime!

Two questions:
1. When we have a collision, how do we resolve it?
2. How do we minimize the number of collisions?

CSE 373 SU 19 - ROBBIE WEBER 24

Strategies to handle hash collisions

25CSE 373 AU 18 – SHRI MARE

There are multiple strategies. In this class, we’ll cover the following ones:

1. Separate chaining

2. Open addressing
- Linear probing
- Quadratic probing
- Double hashing

Strategies to handle hash collision

CSE 373 AU 18 – SHRI MARE 26

Handling Collisions
Solution 1: Chaining
Each space holds a “bucket” that can store multiple
values. Bucket is often implemented with a LinkedList

CSE 373 SU 19 - ROBBIE WEBER 27

Operation Array w/ indices as keys

put(key,value)

best Θ(1)

In-practice

worst Θ(n)

get(key)

In-practice Θ(1)

average

worst Θ(n)

remove(key)

best Θ(1)

In-practice

worst Θ(n)

“In-Practice” Case:
Depends on average number of
elements per chain

Load Factor λ
If n is the total number of key-
value pairs
Let c be the capacity of array
Load Factor λ = "#

1

2
3
4
5
6
7
8

1

9

0
indices

13

22

7

44

21

In-Practice
We’re going to make an assumption about how often collisions happen.

It’s not actually true, but it’s “close enough” to true that our big-O analyses will be pretty
consistent with what you usually see in-practice.

The hash function will distribute the input keys as evenly as possible across the buckets.

Our Hashing Assumption

This is not true in the real-world.

But what is usually true in the real-world is pretty close is close enough that the big-O analyses
are the same.

CSE 373 SU 19 - ROBBIE WEBER 28

In-Practice

What is the worst-case under our hashing assumption?

We might have to go to the end of the linked list in one of the buckets. How long will that linked
list be?

If we have ! keys and our hash table has " buckets, it will be length #$.

That number will come up so often, we give it a name. It’s the load factor.
- We denote it by %.

The hash function will distribute the input keys as evenly as possible across the buckets.

Our Hashing Assumption

CSE 373 SU 19 - ROBBIE WEBER 29

Handling Collisions
Solution 1: Chaining
Each space holds a “bucket” that can store multiple
values. Bucket is often implemented with a LinkedList

CSE 373 SU 19 - ROBBIE WEBER 30

Operation Array w/ indices as keys

put(key,value)

best O(1)

In-practice O(1 + λ)

worst O(n)

get(key)

In-practice O(1)

average O(1 + λ)

worst O(n)

remove(key)

best O(1)

In-practice O(1 + λ)

worst O(n)

“In-Practice” Case:
Depends on average number of
elements per chain

Load Factor λ
If n is the total number of key-
value pairs
Let c be the capacity of array
Load Factor λ = !"

1

2
3
4
5
6
7
8

1

9

0
indices

13

22

7

44

21

Practice
Consider an IntegerDictionary using separate chaining with an internal capacity of 10.
Assume our buckets are implemented using a LinkedList where we append new key-value
pairs to the end.

Now, suppose we insert the following key-value pairs. What does the dictionary internally
look like?

(1, a) (5,b) (11,a) (7,d) (12,e) (17,f) (1,g) (25,h)

CSE 373 SU 19 - ROBBIE WEBER 31

0 1 2 3 4 5 6 7 8 9

(1, a) (5, b)

(11, a) (17, f)

(1, g) (12, e) (7, d)

(25, h)

3 Minutes

What about non integer keys?
Hash Function

An algorithm that maps a given key to an integer representing the index in the array for where to
store the associated value

Goals
Avoid collisions
- The more collisions, the further we move away from O(1+!)
- Produce a wide range of indices, and distribute evenly over them

Low computational costs
- Hash function is called every time we want to interact with the data

CSE 373 SU 19 - ROBBIE WEBER 32

How to Hash non Integer Keys
Implementation 1: Simple aspect of values
public int hashCode(String input) {

return input.length();
}

Implementation 2: More aspects of value
public int hashCode(String input) {

int output = 0;
for(char c : input) {

out += (int)c;
}
return output;

}

Implementation 3: Multiple aspects of value + math!
public int hashCode(String input) {

int output = 1;
for (char c : input) {

int nextPrime = getNextPrime();
out *= Math.pow(nextPrime, (int)c);

}
return Math.pow(nextPrime, input.length());

}

CSE 373 SU 19 - ROBBIE WEBER 33

Pro: super fast
Con: lots of collisions!

Pro: still really fast
Con: some collisions

Pro: few collisions
Con: slow, gigantic integers

Practice
Consider a StringDictionary using separate chaining with an internal capacity of 10. Assume our
buckets are implemented using a LinkedList. Use the following hash function:

public int hashCode(String input) {
return input.length() % arr.length;

}

Now, insert the following key-value pairs. What does the dictionary internally look like?

(“a”, 1) (“ab”, 2) (“c”, 3) (“abc”, 4) (“abcd”, 5) (“abcdabcd”, 6) (“five”, 7) (“hello world”, 8)

CSE 373 SU 19 - ROBBIE WEBER 34

0 1 2 3 4 5 6 7 8 9

(“a”, 1) (“abcd”, 5)

(“c”, 3)

(“five”, 7)

(“abc”, 4)(“ab”, 2)

(“hello world”, 8)

(“abcdabcd”, 6)

3 Minutes

Java and Hash Functions
Object class includes default functionality:
- equals
- hashCode

If you want to implement your own hashCode you should:
- Override BOTH hashCode() and equals()

If a.equals(b) is true then a.hashCode() == b.hashCode() MUST also be true

That requirement is part of the Object interface.
Other people’s code will assume you’ve followed this rule.

Java’s HashMap (and HashSet) will assume you follow these rules and conventions for your
custom objects if you want to use your custom objects as keys.

CSE 373 SU 19 - ROBBIE WEBER 35

Resizing

Our running time in practice depends on !. What do we do when ! is big?
Resize the array!
- Usually we double, that’s not quite the best idea here
- Increase array size to next prime number that’s roughly double the array size

- Prime numbers tend to redistribute keys, because you’re now modding by a
completely unrelated number.

- If % TableSize gives you " then %2*TableSize gives either " or 2".
-Rule of thumb: Resize sometime around when λ is somewhere around 1 if
you’re doing separate chaining.
- When you resize, you have to rehash everything!

CSE 373 SU 19 - ROBBIE WEBER 36

