
Lecture 10: AVL Trees CSE 373 Data Structures and

Algorithms

Warm-Up

AVL condition: For every node, the height of its left subtree and right

subtree differ by at most 1.

Is this a valid AVL tree? 4

52

73

9

8 106

An AVL tree is a binary search tree that also meets the following rule

Height of a tree:

Maximum number of edges on a

path from the root to a leaf.

A tree with one node has height 0

A null tree (no nodes) has height -1

pollEV.com/cse373su19

Is this a valid AVL tree?

Are These AVL Trees?

6

42

73

9

8 105

4

52

73

9

8 10

6

Avoiding the Degenerate Tree

An AVL tree is a binary search tree that also meets the following rule

This will avoid the Θ 𝑛 behavior! We have to check:

1. We must be able to maintain this property when inserting/deleting

2. Such a tree must have height 𝑂(log 𝑛) .

AVL condition: For every node, the height of its left subtree and right

subtree differ by at most 1.

Bounding the Height

Let 𝑚 ℎ be the minimum number of nodes in an AVL tree of height ℎ.

If we can say 𝑚(ℎ) is big, we’ll be able to say that a tree with 𝑛 nodes has a small
height.

So…what’s 𝑚(ℎ)?

𝑚 ℎ = ቐ
1 if ℎ = 0
2 if ℎ = 1
𝑚 ℎ − 1 +𝑚 ℎ − 2 + 1 otherwise

A simpler recurrence

Hey! That’s a recurrence!

Recurrences can describe any kind of function, not just running time of code!

𝑚 ℎ = ቐ
1 if ℎ = 0
2 if ℎ = 1
𝑚 ℎ − 1 +𝑚 ℎ − 2 + 1 otherwise

We could use tree method, but it’s a little…weird.

It’ll be easier if we change things just a bit:

𝑚 ℎ ≥ ቐ
1 if ℎ = 0
2 if ℎ = 1
𝑚 ℎ − 𝟐 +𝑚 ℎ − 2 + 1 otherwise

𝑚 ℎ ≥ ቐ
1 if ℎ = 0
2 if ℎ = 1
𝑚 ℎ − 2 +𝑚 ℎ − 2 + 1 otherwise

Answer the following

questions:

1. What is the size of the

input on level 𝑖?
2. What is the work

done by each node

on the 𝑖𝑡ℎ recursive

level

3. What is the number

of nodes at level 𝑖?
4. What is the total work

done at the i^th

recursive level?

5. What value of 𝑖 does

the last level occur?

6. What is the total work

across the base case

level?

Tree Method Practice

CSE 373 SP 18 - KASEY CHAMPION 8

1. What is the size of the input on level 𝑖?

2. What is the work done by each node on the 𝑖𝑡ℎ

recursive level?

3. What is the number of nodes at level 𝑖?

4. What is the total work done at the 𝑖threcursive

level?

5. What value of 𝑖 does the last level occur?

6. What is the total work across the base case

level?

h−2𝑖

1

2𝑖

2𝑖 ⋅ 1

h−2𝑖 = 0→ 𝑖 =
ℎ

2

5 Minutes

2ℎ/2

𝑚 ℎ ≥ ෍

𝑖=0

ℎ
2
−1

2𝑖 + 2ℎ/2 = 2ℎ/2 − 1 + 2ℎ/2

𝑚 ℎ ≥ 2ℎ/2

Finishing the Argument

Suppose I give you an AVL tree of height ℎ, how many nodes, 𝑛 can it have?

Every AVL tree of height ℎ has at least 𝑚 ℎ nodes (that’s how 𝑚() was defined)

So 𝑛 ≥ 𝑚 ℎ ≥ 2ℎ/2

This inequality is true for all AVL trees of height ℎ. So we can reverse the logic,

i.e. it’s still true to say “if we have 𝑛 nodes, what can the height be? It must satisfy:

𝑛 ≥ 2ℎ/2

log2 𝑛 ≥ℎ/2

ℎ ≤ 2 log2 𝑛 AVL trees are always short, just like we wanted!

Avoiding the Degenerate Tree

An AVL tree is a binary search tree that also meets the following rule

This will avoid the Θ 𝑛 behavior! We have to check:

1. We must be able to maintain this property when inserting/deleting

2. Such a tree must have height 𝑂(log 𝑛) .

AVL condition: For every node, the height of its left subtree and right

subtree differ by at most 1.

Insertion

What happens if when we do an insertion, we break the AVL condition?

1

2

3
1

2

3

Left Rotation

x

y

z

Rest of the

tree UNBALANCED

Right subtree is 2 longer

A
B

C D

x

y

z

Rest of the

tree

A B

C D

BALANCED

Right subtree is 1 longer

6

8

1 3

10

9

72

4

5

11

6

8

1 3

10

9

72

4

5

11

9

7

4

8

6

5

1 3

2

10

11

Right rotation

1

2

3

1

2

3

Just like a left roation, just reflected.

It Gets More Complicated

1

3

2

Can’t do a left rotation

Do a “right” rotation around 3 first.

1

3

2

Now do a left rotation.

1

2

3

There’s a “kink” in

the tree where the

insertion happened.

Right Left Rotation

x

z

y

Rest of the

tree

A

B C

D

x

y

z

Rest of the

tree

A B

C D

BALANCED

Right subtree is 1 longerUNBALANCED

Right subtree is 2 longer

Left subtree is

1 longer

Four Types of Rotations

x

y

z

A B C D

Insert location Solution

Left subtree of left

child (A)

Single right rotation

Right subtree of left

child (B)

Double (left-right) rotation

Left subtree of right

child (C)

Double (right-left) rotation

Right subtree of

right child(D)

Single left rotation

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 21

8

9

10

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 22

8

9

10

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 23

8

11

9

10

12

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 24

8

11

9

10

12

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 25

8

9

10

11

12

How Long Does Rebalancing Take?

Assume we store in each node the height of its subtree.

How do we find an unbalanced node?

How many rotations might we have to do?

How Long Does Rebalancing Take?

Assume we store in each node the height of its subtree.

How do we find an unbalanced node?
-Just go back up the tree from where we inserted.

How many rotations might we have to do?
-Just a single or double rotation on the lowest unbalanced node.

-A rotation will cause the subtree rooted where the rotation happens to have the
same height it had before insertion.

6

8

1 3

10

9

72

4

5

11

9

7

4

8

6

5

1 3

2

10

11

Deletion

There is a similar set of rotations that will always let you rebalance an
AVL tree after a deletion.

The textbook (or Wikipedia) can tell you more.

We won’t test you on deletions, beyond the following facts:
-Deletion is similar to insertion.

-It takes Θ(log 𝑛) time on a dictionary with 𝑛 elements.

-We won’t ask you to perform a deletion.

Avoiding the Degenerate Tree

An AVL tree is a binary search tree that also meets the following rule

This will avoid the Θ 𝑛 behavior! We have to check:

1. We must be able to maintain this property when inserting/deleting

2. Such a tree must have height 𝑂(log 𝑛) .

AVL condition: For every node, the height of its left subtree and right

subtree differ by at most 1.

Three Asides

Three related topics, we’ll cover what we can:

Lazy deletion

How fast is Θ(log 𝑛)

Traversals

Aside: Lazy Deletion

Deleting things is hard. Let’s be lazy.

Instead of actually removing elements from a data structure add a flag for whether
the element is “really there.”

Then when you call delete, just find the item you’re looking for, and set the flag.

Should you “really delete” or just lazy delete?

This sounds like a design decision! What are the tradeoffs?

Aside: Lazy Deletion

Pros:

Much easier to write delete function.

Delete takes the same time as find (much faster for our data structures that shift everything!)

Cons:

All code now has to check that entries are really there

Running time of all operations is now in terms of elements ever inserted, not number of elements
currently in the data structure.

Takeaways:

General technique (not just for dictionaries).

But only use it if you have a good reason.

Aside: How Fast is Θ(log 𝑛)?

If you just looked at a list of common running times

You might think this was a small improvement.

It was a HUGE improvement!

Class Big O If you double N… Example algorithm

constant O(1) unchanged Add to front of linked list

logarithmic O(log n) Increases slightly Binary search

linear O(n) doubles Sequential search

“n log n” O(nlog n) Slightly more than

doubles

Merge sort

quadratic O(n2) quadruples Nested loops traversing a 2D

array

Logarithmic vs. Linear

If you double the size of the input,
- A linear time algorithm takes twice as long.

- A logarithmic time algorithm has a constant additive increase to its running time.

To make a logarithmic time algorithm take twice as long, how much do you have to
increase 𝑛 by?

You have to square it log(𝑛2) = 2 log(𝑛) .

A gigabyte worth of integer keys can fit in an AVL tree of height 60.

It takes a ridiculously large input to make a logarithmic time algorithm go slowly.

Log isn’t “that running time between linear and constant” it’s “that running time that’s barely worse
than a constant.

Logarithmic Running Times

This identity is so important,

one of my friends made me a

cross-stitch of it.

Two lessons:

1. Log running times are

REALLY REALLY FAST.

2. 𝑂(log 𝑛3) is not

simplified, it’s just 𝑂(log 𝑛)

Aside: Traversals

What if the heights of subtrees were corrupted.

How could we calculate from scratch?

We could use a “traversal”
-A process that visits every piece of data in a data structure.

int height(Node curr){

if(curr==null) return -1;

int h = Math.max(height(curr.left),height(curr.right));

return h+1;

}

Three Kinds of Traversals

InOrder(Node curr){

InOrder(curr.left);

doSomething(curr);

InOrder(curr.right);

}

PreOrder(Node curr){

doSomething(curr);

PreOrder(curr.left);

PreOrder(curr.right);

}

PostOrder(Node curr){

PostOrder(curr.left);

PostOrder(curr.right);

doSomething(curr);

}

Traversal Practice

For each of the following scenarios, choose an appropriate traversal:

1. Print out all the keys in an AVL-Dictionary in sorted order.

2. Make a copy of an AVL tree

3. Determine if an AVL tree is balanced (assume height values are not stored)

Traversals

If we have 𝑛 elements, how long does it take to calculate height?

Θ(𝑛) time.

The recursion tree (from the tree method) IS the AVL tree!

We do a constant number of operations at each node

In general, traversals take Θ 𝑛 ⋅ 𝑓(𝑘) time,

where doSomething()takes Θ 𝑓 𝑘 time.

Common question on technical interviews!

Aside: Other Self-Balancing Trees

There are lots of flavors of self-balancing search trees

“Red-black trees” work on a similar principle to AVL trees.

“Splay trees”

-Get 𝑂(log 𝑛) amortized bounds for all operations.

“Scapegoat trees”

“Treaps” – a BST and heap in one (!)

Similar tradeoffs to AVL trees.

Wednesday: A completely different idea for a dictionary

Goal: 𝑂(1) operations in practice, in exchange for Θ(𝑛) worst case.

