
Lecture 9: Recurrences 
and AVL Trees

CSE 373: Data Structures and 

Algorithms



Administrivia

Exercise 1 due tonight

Exercise 2 out tonight

Project 1 part 2 out now

Since we pushed a day late, it’s due a day later (Thursday July 18th)

Review session Tuesday at 1:10 in Sieg 134 

Practice recurrences!



More Administrivia

Project 2 partner form will come out soon – start looking for a partner!
- You may keep your previous partner or switch.

- Everyone needs to fill out the partner form (even if you’re keeping the same partner; both 
members of a partnership must fill out the form).

Some questions are better handled in office hours not on piazza.

If you’re failing a test, and need help debugging – go to office hours, not piazza.

If you don’t understand why your code is throwing an exception – office hours!

Piazza is great for conceptual questions; for a lot of code-questions we have to say 
“come see us in person.”

The TAs have been lonely at office hours. Ask them for help in person!



Warm Up
Write a recurrence to describe the running time of the following method:

When describing non-recursive work, simplify out any constant factors and lower-order terms.

public void nonsense(ArrayList<Integer> arr, int ind){

if(ind == -1) return;

for(int j = 0; j < ind; j++){

for(int k = j+1; k < ind; k++){

System.out.println(arr[j] + “ “ + arr[k]);

}

}

nonsense(toSort, ind-1);

}

pollEV.com/cse373su19

Write a recurrence for the 
running time of nonsense
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𝑇 𝑛 = ቊ𝑇 𝑛 − 1 + 𝑛2 if 𝑛 > 1
1 otherwise

Even though we had lower-order terms initially, this is the recurrence we would 

try to solve.

We’ll tell you to simplify if we want you to.



Binary Search Tree

Invariants
- Things that are always true.

- The way you make sure your data structure works and is efficient.

Binary Search Tree invariants:

-For every node with key 𝑘:

-The left subtree has only keys smaller than 𝑘.

-The right subtree has only keys greater than 𝑘.

CSE 373 SP 18 - KASEY CHAMPION 8

10

“foo”

7

“bar”

12

“baz”

9

“sho”

5

“fo”

15

“sup”

13

“boo”

8

“bye”

1

“hi”



BSTs as dictionaries

Let’s figure out the worst case of get() for two different states our BST could be in.

Perfectly balanced – for every node, its 

descendants are split evenly between 

left and right subtrees.

Degenerate – for every node, all of its 

descendants are in the right subtree. 
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BSTs as dictionaries

Let’s figure out the worst case of get() for two different states our BST could be in.

Perfectly balanced – for every node, its 

descendants are split evenly between 

left and right subtrees.
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get() is a recursive method!

𝑇 𝑛 = ቐ
𝑇

𝑛

2
+ 1 if 𝑛 > 1

3 otherwise

T n = Θ(log 𝑛)



BSTs as dictionaries

Let’s figure out the worst case of get() for two different states our BST could be in.

Degenerate – for every node, all of its 

descendants are in the right subtree. 
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get() is a recursive method!

𝑇 𝑛 = ቊ
𝑇 𝑛 − 1 + 1 if 𝑛 > 1
3 otherwise

T n = Θ(𝑛)



Invariants

Observation: What was important was actually the height of the tree.
- Height: number of edges on the longest path from the root to a leaf.

That’s the number of recursive calls we’re going to make
- And each recursive call does a constant number of operations.

The BST invariant makes it easy to know where to find a key

But it doesn’t force the tree to be short. 

Let’s add an invariant that forces the height to be short!



Invariants

Why not just make the invariant “keep the height of the tree at most 𝑂(log 𝑛)” ?

The invariant needs to be easy to maintain.

Every method we write needs to ensure it doesn’t break it. 
Can we keep that invariant true without making a bunch of other methods slow?

It’s not obvious…

Writing invariants is more art than science. 
- Learning that art is beyond the scope of the course

- but we’ll talk a bit about how you might have come up with a good invariant (so our ideas are motivated).

When writing invariants, we usually start by asking “can we maintain this” then ask “is it 
strong enough to make our code as efficient as we want?”



Avoiding Θ 𝑛 behavior

Here are some invariants you might try. 
Can you maintain them? If not what can go wrong?

Do you think they are strong enough to make get efficient?

Root Balanced: The root must have the same number of nodes in its left 

and right subtrees

Recursively Balanced: Every node must have the same number of nodes 

in its left and right subtrees.

Root Height Balanced: The left and right subtrees of the root must have 

the same height.



Root Balanced: The root must have the same number of nodes in its left 

and right subtrees



Recursively Balanced: Every node must have the same number of nodes 

in its left and right subtrees.



Root Height Balanced: The left and right subtrees of the root must have 

the same height.



Invariant Lessons

Need requirements everywhere, not just at root

Forcing things to be exactly equal is too difficult to maintain.



Avoiding the Degenerate Tree

An AVL tree is a binary search tree that also meets the following rule

This will avoid the Θ 𝑛 behavior! We have to check:

1. We must be able to maintain this property when inserting/deleting

2. Such a tree must have height 𝑂(log 𝑛) .

AVL condition: For every node, the height of its left subtree and right 

subtree differ by at most 1. 



Bounding the Height

Let 𝑚 ℎ be the minimum number of nodes in an AVL tree of height ℎ. 

If we can say 𝑚(ℎ) is big, we’ll be able to say that a tree with 𝑛 nodes has a small 
height. 

So…what’s 𝑚(ℎ)?

𝑚 ℎ = ቐ
1 if ℎ = 0
2 if ℎ = 1
𝑚 ℎ − 1 +𝑚 ℎ − 2 + 1 otherwise



A simpler recurrence

Hey! That’s a recurrence!

Recurrences can describe any kind of function, not just running time of code!

𝑚 ℎ = ቐ
1 if ℎ = 0
2 if ℎ = 1
𝑚 ℎ − 1 +𝑚 ℎ − 2 + 1 otherwise

We could use tree method, but it’s a little…weird.

It’ll be easier if we change things just a bit:

𝑚 ℎ ≥ ቐ
1 if ℎ = 0
2 if ℎ = 1
𝑚 ℎ − 𝟐 +𝑚 ℎ − 2 + 1 otherwise



𝑚 ℎ ≥ ቐ
1 if ℎ = 0
2 if ℎ = 1
𝑚 ℎ − 2 +𝑚 ℎ − 2 + 1 otherwise

Answer the following 

questions:

1. What is the size of the 

input on level 𝑖?
2. What is the work 

done by each node 

on the 𝑖𝑡ℎ recursive 

level

3. What is the number 

of nodes at level 𝑖?
4. What is the total work 

done at the i^th

recursive level?

5. What value of 𝑖 does 

the last level occur?

6. What is the total work 

across the base case 

level?



Tree Method Practice
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1. What is the size of the input on level 𝑖?

2. What is the work done by each node on the 𝑖𝑡ℎ

recursive level?

3. What is the number of nodes at level 𝑖?

4. What is the total work done at the 𝑖threcursive 

level?

5. What value of 𝑖 does the last level occur?

6. What is the total work across the base case 

level?

𝑛 − 2𝑖

1

2𝑖

2𝑖 ⋅ 1

𝑛 − 2𝑖 = 0 𝑖 =
𝑛

2

5 Minutes

2𝑛/2

𝑚 𝑛 ≥ 

𝑖=0

𝑛
2
−1

2𝑖 + 2𝑛/2 = 2𝑛/2 − 1 + 2𝑛/2

𝑚 𝑛 ≥ 2𝑛/2



Warm-Up
AVL condition: For every node, the height of its left subtree and right 

subtree differ by at most 1. 

Is this a valid AVL tree? 4
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Are These AVL Trees?
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Insertion

What happens if when we do an insertion, we break the AVL condition?
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Left Rotation
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Rest of the 

tree UNBALANCED

Right subtree is 2 longer
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It Gets More Complicated
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Can’t do a left rotation

Do a “right” rotation around 3 first. 
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Now do a left rotation.
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the tree where the 

insertion happened.



Right Left Rotation
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Four Types of Rotations

x

y

z

A B C D

Insert location Solution

Left subtree of left 

child (A)

Single right rotation

Right subtree of left 

child (B)

Double (left-right) rotation

Left subtree of right 

child (C)

Double (right-left) rotation

Right subtree of 

right child(D)

Single left rotation



AVL Example: 8,9,10,12,11
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AVL Example: 8,9,10,12,11
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AVL Example: 8,9,10,12,11
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AVL Example: 8,9,10,12,11
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AVL Example: 8,9,10,12,11
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How Long Does Rebalancing Take?

Assume we store in each node the height of its subtree.

How do we find an unbalanced node?

How many rotations might we have to do?



How Long Does Rebalancing Take?

Assume we store in each node the height of its subtree.

How do we find an unbalanced node?
-Just go back up the tree from where we inserted.

How many rotations might we have to do?
-Just a single or double rotation on the lowest unbalanced node. 

-A rotation will cause the subtree rooted where the rotation happens to have the 
same height it had before insertion.



Deletion

In Project 2: Just do lazy deletion!

Alternatively: a similar set of rotations is possible to rebalance after a 
deletion. 

The textbook (or Wikipedia) can tell you more. You can implement these 
yourself in “Above and Beyond”



Aside: Traversals

What if, to save space, we didn’t store heights of subtrees.

How could we calculate from scratch?

We could use a “traversal”

int height(Node curr){

if(curr==null) return -1;

int h = Math.max(height(curr.left),height(curr.right));

return h+1;

}



Three Kinds of Traversals

InOrder(Node curr){

InOrder(curr.left);

doSomething(curr);

InOrder(curr.right);

}

PreOrder(Node curr){

doSomething(curr);

PreOrder(curr.left);

PreOrder(curr.right);

}
PostOrder(Node curr){

PostOrder(curr.left);

PostOrder(curr.right);

doSomething(curr);

}



Traversals 

If we have 𝑛 elements, how long does it take to calculate height?

Θ(𝑛) time. 

The recursion tree (from the tree method) IS the AVL tree!

We do a constant number of operations at each node

In general, traversals take Θ 𝑛 ⋅ 𝑓(𝑛) time, 

where doSomething()takes Θ 𝑓 𝑛 time.



Where Were We?

We used rotations to restore the AVL property after insertion.

If ℎ is the height of an AVL tree:

It takes Ο(ℎ) time to find an imbalance (if any) and fix it.

So the worst case running time of insert? Θ(ℎ).

Deletion? With lazy deletion just the time to find, i.e. Θ ℎ .

Is ℎ always 𝑂(log 𝑛) ? YES! These are all Θ(log 𝑛) . Let’s prove it!



Bounding the Height

Suppose you have a tree of height ℎ, meeting the AVL condition.

What is the minimum number of nodes in the tree?

If ℎ = 0, then 1 node

If ℎ = 1, then 2 nodes. 

In general?

AVL condition: For every node, the height of its left subtree and right 

subtree differ by at most 1. 



Bounding the Height

In general, let 𝑁() be the minimum number of nodes in a tree of height 
ℎ, meeting the AVL requirement.

𝑁 ℎ = ቐ
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise



Bounding the Height

𝑁 ℎ = ቐ
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise

We can try unrolling or recursion trees. 



Let’s try unrolling

𝑁 ℎ = 𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1

= 𝑁 ℎ − 2 + 𝑁 ℎ − 3 + 1 + 𝑁 ℎ − 2 + 1

= 2𝑁 ℎ − 2 + 𝑁 ℎ − 3 + 1 + 1

= 2 𝑁 ℎ − 3 + 𝑁 ℎ − 4 + 1 + 𝑁 ℎ − 3 + 1 + 1

= 3𝑁 ℎ − 3 + 2𝑁 ℎ − 4 + 2 + 1 + 1

= 3 𝑁 ℎ − 4 + 𝑁 ℎ − 5 + 1 + 2𝑁 ℎ − 4 + 2 + 1 + 1

= 5𝑁 ℎ − 4 + 3𝑁 ℎ − 5 + 3 + 2 + 1 + 1

= 5 𝑁 ℎ − 5 + 𝑁 ℎ − 6 + 1 + 3𝑁 ℎ − 5 + 3 + 2 + 1 + 1

= 5𝑁 ℎ − 6 + 8𝑁 ℎ − 5 + 5 + 3 + 2 + 1 + 1
…



Bounding the Height

𝑁 ℎ = ቐ
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise

When unrolling we’ll quickly realize:
-Something with Fibonacci numbers is going on.

-It’s going to be hard to exactly describe the pattern.

The real solution (using deep math magic beyond this course) is 

𝑁 ℎ ≥ 𝜙ℎ − 1 where 𝜙 is 
1+ 5

2
≈ 1.62



The Proof

To convince you that the recurrence solution is correct, I don’t need to 
tell you where it came from. 

I just need to prove it correct via induction. 

We’ll need this fact: 𝜙 + 1 = 𝜙2

It’s easy to check by just evaluating
1+ 5

2

2



The Proof

𝑁 ℎ = ቐ
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise

𝜙 + 1 = 𝜙2

Base Cases: 𝜙0 − 1 = 0 < 1 = 𝑁(0) 𝜙1 − 1 = 𝜙 − 1 ≈ 0.62 < 2 = 𝑁(1)



Inductive Step

Inductive Hypothesis: Suppose that 𝑁 ℎ > 𝜙ℎ − 1 for ℎ < 𝑘. 

Inductive Step: We show 𝑁 𝑘 > 𝜙𝑘 − 1.

𝑁 𝑘 = 𝑁 𝑘 − 1 + 𝑁 𝑘 − 2 + 1 definition of 𝑁()

> 𝜙𝑘−1 − 1 + 𝜙𝑘−2 − 1 + 1 by IH (note we need a strong hypothesis here)

= 𝜙𝑘−1 + 𝜙𝑘−2 − 1 algebra

= 𝜙𝑘−2 𝜙 + 1 − 1

= 𝜙𝑘−2 𝜙2 − 1 fact from last slide

= 𝜙𝑘+1 − 1



What’s the point?

The number of nodes in an AVL tree of height ℎ is always at least 𝜙ℎ − 1

So in an AVL tree with 𝑛 elements, the height is always at most log𝜙 𝑛 + 1

In big-O terms, that’s enough to say the number of nodes is 𝑂 log 𝑛 .

So our AVL trees really do have 𝑂(log 𝑛) worst cases for insert, find, and delete!



Wrap Up

AVL Trees:

𝑂(log 𝑛) worst case find, insert, and delete.

Pros:

Much more reliable running times than regular BSTs.

Cons: 

Tricky to implement

A little more space to store subtree heights



Other Dictionaries

There are lots of flavors of self-balancing search trees

“Red-black trees” work on a similar principle to AVL trees.

“Splay trees”

-Get 𝑂(log 𝑛) amortized bounds for all operations.

“Scapegoat trees”

“Treaps” – a BST and heap in one (!)

Similar tradeoffs to AVL trees.

Next week: A completely different idea for a dictionary

Goal: 𝑂(1) operations on average, in exchange for 𝑂(𝑛) worst case. 



Bounding the Height

Suppose you have a tree of height ℎ, meeting the AVL condition.

What is the minimum number of nodes in the tree?

If ℎ = 0, then 1 node

If ℎ = 1, then 2 nodes. 

In general?

AVL condition: For every node, the height of its left subtree and right 

subtree differ by at most 1. 



Bounding the Height

In general, let 𝑁() be the minimum number of nodes in a tree of height 
ℎ, meeting the AVL requirement.

𝑁 ℎ = ቐ
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise



Bounding the Height

𝑁 ℎ = ቐ
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise

We can try unrolling or recursion trees. 



Bounding the Height

𝑁 ℎ = ቐ
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise

When unrolling we’ll quickly realize:
-Something with Fibonacci numbers is going on.

-It’s really hard to exactly describe the pattern.

The real solution (using deep math magic beyond this course) is 

𝑁 ℎ ≥ 𝜙ℎ − 1 where 𝜙 is 
1+ 5

2
≈ 1.62



The Proof

To convince you that the recurrence solution is correct, I don’t need to 
tell you where it came from. 

I just need to prove it correct via induction. 

On whiteboard:

Fact: 𝜙 + 1 = 𝜙2


