Lecture 8: Tree Method

CSE 373: Data Structures and Algorithms
Administrivia

Project 1 Part 1 due tonight
- Fill out the late day form on the project page if you need to use late days.

Project 1 Part 2 out tonight
- Fix bugs from part 1 to get half of your missed points back.
- Run experiments on your code (connect the programming project to things learned in lecture).

Exercise 1 due Friday
Don’t Panic

We couldn’t apply Master Theorem to this recurrence:

\[T(n) = \begin{cases}
T(n - 1) + 1 & \text{if } n > 1 \\
3 & \text{otherwise}
\end{cases} \]

The books don’t have a nice theorem;
They do have methods for figuring out the big-O.
Unrolling

\[T(n) = \begin{cases}
T(n - 1) + 1 & \text{if } n > 1 \\
3 & \text{otherwise}
\end{cases} \]

Idea: keep plugging the definition of \(T() \) into itself. Until you find the pattern and can hit the base case.
Unrolling

\[T(n) = \begin{cases}
T(n - 1) + 1 & \text{if } n > 1 \\
3 & \text{otherwise}
\end{cases} \]

\[T(n) = T(n - 1) + 1 \]
\[[T(n - 1 - 1) + 1] + 1 = T(n - 2) + 1 + 1 \]
\[[T(n - 2 - 1) + 1] + 1 + 1 = T(n - 3) + 1 + 1 + 1 \]
\[[T(n - 3 - 1) + 1] + 1 + 1 + 1 = T(n - 4) + 1 + 1 + 1 + 1 \]
\[T(n - i) + i \text{ for any } i. \]

The thing we don’t understand is \(T() \). We can get rid of it by hitting the base case. Set \(i \) so that \(n - i = 1 \). \(\Rightarrow i = n - 1 \)

\[T(n - (n - 1)) + (n - 1) \]
\[T(1) + (n - 1) = 3 + (n - 1) = n + 2 \]

\[T(n) = n + 2 \]
We did it!

For BSTs:
If we’re in the case where everything is balanced, we have a much better dictionary.
But if we have that degenerate BST, we’re no better off than with an array or linked list.

For analyzing code:
We didn’t just get the big-Θ, we actually got an exact expression too!
Let’s try another one!
public int dumbFindMax(int[] arr, int hi){
 if(hi == 0)
 return arr[0];
 int maxInd = 0;
 for(int i=0; i<hi; i++){
 if(arr[i] > arr[maxInd])
 maxInd=i;
 }
 return Math.max(arr[maxInd], dumbFindMax(arr, hi-1));
}
\[T(n) = \begin{cases}
T(n - 1) + n & \text{if } n \geq 2 \\
1 & \text{otherwise}
\end{cases} \]

You probably had some lower-order terms when you wrote this recurrence. When we’re solving recurrences we usually ignore lower-order terms in non-recursive work. They make the algebra a lot more complicated, and don’t affect the big-O.

We’ll tell you to ignore lower-order terms when we want you to.
\[T(n) = \begin{cases}
T(n - 1) + n & \text{if } n \geq 2 \\
1 & \text{otherwise}
\end{cases} \]

\[T(n - 1) + n \]
\[T(n - 1 - 1) + (n - 1) + n = T(n - 2) + (n - 1) + n \]
\[T(n - 3) + (n - 2) + (n - 1) + n \]
\[T(n - 4) + (n - 3) + (n - 2) + (n - 1) + n \]

\[T(n - i) + \sum_{j=0}^{i-1} n - j \]

Plug in \(i \) so \(n - i \) is 1

\[T(n - (n - 1)) + \sum_{j=0}^{n-1} n - j = \]
\[
T(n) = \begin{cases}
T(n-1) + n & \text{if } n \geq 2 \\
1 & \text{otherwise}
\end{cases}
\]

\[
1 + \sum_{j=0}^{n-2} n - j = 1 + \sum_{j=0}^{n-2} n - \sum_{j=0}^{n-2} j
\]

\[
= 1 + n(n-1) - \sum_{j=0}^{n-2} j
\]

\[
= 1 + n(n-1) - \frac{(n-1)(n-2)}{2}
\]

\[
= n^2 - n - \frac{n^2}{2} + \frac{3n}{2} - 1
\]

\[\in \Theta(n^2)\]
\[T(n) = \begin{cases} 3T\left(\frac{n}{4}\right) + n^2 & \text{if } n > 1 \\ 4 & \text{otherwise} \end{cases} \]

We can unroll to get the answer here, but it’s really easy to make a small algebra mistake.

If that happens we might not be able to find the pattern
- Or worse find the wrong pattern.

There’s a way to organize our algebra so it’s easier to find the pattern.
Tree Method

Idea: We’ll do the same algebra, but let’s give ourselves a visual to make the organization easier.

We’ll make a **tree**.

Each node of the tree represents one recursive call
- The children of that node are the new recursive calls made
Tree Method Practice

\[T(n) = \begin{cases}
4 & \text{when } n \leq 1 \\
3T\left(\frac{n}{4}\right) + n^2 & \text{otherwise}
\end{cases} \]

Answer the following questions:
1. What is the size of the input on level \(i \)?
2. What is the work done by each node on the \(i \)-th recursive level?
3. What is the number of nodes at level \(i \)?
4. What is the total work done at the \(i \)-th recursive level?
5. What value of \(i \) does the last level occur?
6. What is the total work across the base case level?
Tree Method Practice

1. What is the size of the input on level i? \[\frac{n}{4^i} \]

2. What is the work done by each node on the i^{th} recursive level? \[\left(\frac{n}{4^i} \right)^2 \]

3. What is the number of nodes at level i? \[3^i \]

4. What is the total work done at the i^{th} recursive level? \[3^i \left(\frac{n}{4^i} \right)^2 = \left(\frac{3}{16} \right)^i n^2 \]

5. What value of i does the last level occur? \[\frac{n}{4^i} = 1 \rightarrow n = 4^i \rightarrow i = \log_4 n \]

6. What is the total work across the base case level? \[3^{\log_4 n} \cdot 4 \]

Combining it all together...

\[T(n) = \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{16} \right)^i n^2 + 4n^{\log_4 3} \]
Tree Method Practice

\[T(n) = \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{16} \right)^i n^2 + 4n^{\log_4 3} \]

factoring out a constant

\[T(n) = n^2 \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{16} \right)^i + 4n^{\log_4 3} \]

finite geometric series

\[\sum_{i=0}^{n-1} x^i = \frac{x^n - 1}{x - 1} \]

Closed form:

\[T(n) = n^2 \left(\frac{\left(\frac{3}{16} \right)^{\log_4 n}}{\frac{3}{16}} - 1 \right) + 4n^{\log_4 3} \]

Identities are on the [webpage](#). You don’t need to memorize them.

So what’s the big-\(\Theta\)...

\[T(n) = n^2 \left(-\frac{16}{13} \right) \left(\frac{3}{16} \right)^{\log_4 n} + \left(\frac{16}{13} \right)n^2 + 4n^{\log_4 3} \]

\[T(n) = n^2 \left(-\frac{16}{13} \right) \left(n^{\log_4 \frac{3}{16}} \right) + \left(\frac{16}{13} \right)n^2 + 4n^{\log_4 3} \]

\[T(n) \in \Theta(n^2) \]
More Tree Method

\[T(n) = \begin{cases}
6T\left(\frac{n}{2}\right) + 2n & \text{if } n > 8 \\
3 & \text{otherwise}
\end{cases} \]
Tree Method Practice

\[T(n) = \begin{cases}
6T\left(\frac{n}{2}\right) + 2n & \text{if } n > 8 \\
3 & \text{otherwise}
\end{cases} \]

Answer the following questions:

1. What is the size of the input on level \(i \)?
2. What is the work done by each node on the \(i^{th} \) recursive level?
3. What is the number of nodes at level \(i \)?
4. What is the total work done at the \(i^{th} \) recursive level?
5. What value of \(i \) does the last level occur?
6. What is the total work across the base case level?
Tree Method Practice

1. What is the size of the input on level \(i \)?
 \[
 \frac{n}{2^i}
 \]

2. What is the work done by each node on the \(i^{th} \) recursive level?
 \[
 n \cdot \frac{2^i}{2^i} = 2n
 \]

3. What is the number of nodes at level \(i \)?
 \[
 6^i
 \]

4. What is the total work done at the \(i^{th} \) recursive level?
 \[
 6^i \left(\frac{2n}{2^i} \right) = 2 \cdot 3^i \cdot n
 \]

5. What value of \(i \) does the last level occur?
 \[
 \frac{n}{2^i} = 2 \rightarrow n = 2^{i+1} \rightarrow i = \log_2(n) - 1
 \]

6. What is the total work across the base case level?
 \[
 6^{\log_2(n)-1} \cdot 3
 \]

- **5 Minutes**

\[
T(n) = \begin{cases}
6T\left(\frac{n}{2}\right) + 2n \text{ if } n > 2 \\
3 \text{ otherwise}
\end{cases}
\]

<table>
<thead>
<tr>
<th>Level ((i))</th>
<th>Number of Nodes</th>
<th>Work per Node</th>
<th>Work per Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(2n)</td>
<td>(2n)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>(\frac{2n}{8})</td>
<td>(\frac{n}{2})</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>(2 \left(\frac{n}{8}\right))</td>
<td>(\frac{n}{8})</td>
</tr>
<tr>
<td>base</td>
<td>(2^{\log_3(n)-1})</td>
<td>3</td>
<td>(\frac{3}{2}n^{1/3})</td>
</tr>
</tbody>
</table>

Combining it all together...

\[
T(n) = \sum_{i=0}^{\log_2(n)-2} 2 \cdot 3^i n + \frac{1}{2} n^{\log_2 6}
\]

- **Power of a log**
 \[
 x^{\log_b y} = y^{\log_b x}
 \]

- **CSE 373 SP 18 - KASEY CHAMPION**
\[T(n) = \sum_{i=0}^{\log_2(n) - 2} 2 \cdot 3^i + \frac{1}{2} n^{\log_2 6} \]

\[= 2n \sum_{i=0}^{\log_2(n) - 2} 3^i + \frac{1}{2} n^{\log_2 6} \]

\[= 2n \frac{3^{\log_2(n) - 1}}{3 - 1} + \frac{1}{2} n^{\log_2 6} \]

\[= n \cdot \frac{n^{\log_2(3)}}{3} + \frac{1}{2} n^{\log_2 6} \]

\[= \frac{n^{\log_2(3)+1}}{3} + \frac{1}{2} n^{\log_2 6} \]

\[= \frac{n^{\log_2(6)}}{3} + \frac{1}{2} n^{\log_2 6} = \frac{5}{6} n^{\log_2 6} \]

\[\log_a b + \log_a c = \log_a (bc) \]