
Lecture 7:
Analyzing Recursive Code

CSE 373: Data Structures and

Algorithms

Administrivia

Project 1 Part 1 due Wednesday

Exercise 1 due Friday.

Where Are We?

Analyzing Code:

So far:
- Writing a Code Model

- Simplifying to 𝑂, Ω, Θ

- Formally proving 𝑂, Ω, Θ

- Worst case vs. Best case

This week
- Recursive Code

- Dictionaries!

Binary Search

int binarySearch(int[] arr, int toFind, int lo, int hi){

if(hi < lo)

return -1;

if(hi == lo)

if(arr[hi] == toFind)

return hi;

return -1;

int mid = (lo+hi) / 2;

if(arr[mid] == toFind)

return mid;

else if(arr[mid] < toFind)

return binarySearch(arr, toFind, mid+1, hi);

else

return binarySearch(arr, toFind, lo, mid-1);

}

Binary search runtime

For an array of size N, it eliminates ½ until 1 element remains.
N, N/2, N/4, N/8, ..., 4, 2, 1

- How many divisions does it take?

Think of it from the other direction:
- How many times do I have to multiply by 2 to reach N?

1, 2, 4, 8, ..., N/4, N/2, N

- Call this number of multiplications "x".

2x = N

x = log2 N

Binary search is in the logarithmic complexity class.

HUNTER SCHAFER - CSE 143 SU 19

Moving Forward

The analysis is correct! But it’s a little ad hoc.

It works great for binary search, but we’re going to deal with more complicated recursive
code in this course.

We need more powerful tools.

Model
Let’s start by just getting a model. Let 𝑇(𝑛) be our model for the worst-case running time of binary
search.

int binarySearch(int[] arr, int toFind, int lo, int hi){

if(hi < lo)

return -1;

if(hi == lo)

if(arr[hi] == toFind)

return hi;

return -1;

int mid = (lo+hi) / 2;

if(arr[mid] == toFind)

return mid;

else if(arr[mid] < toFind)

return binarySearch(arr, toFind, mid+1, hi);

else

return binarySearch(arr, toFind, lo, mid-1);

}

𝑇 𝑛 =

2 if 𝑛 = 0
4 if 𝑛 = 1

5 + 𝑇
𝑛

2
othwerwise

Recurrence

Our code is recursive.

It makes sense that our model will be recursive too!

A recursive definition of a function is called a recurrence.

It’s a lot like recursive code:

-At least one base case and at least one recursive case.

-The cases of your recurrence usually correspond exactly to the cases of the code.

-Input size should be getting smaller.

Write a recurrence

int recursiveFunction(int n){

if(n < 3)

return 3;

for(int int i=0; i < n; i++)

System.out.println(i);

int val1 = recursiveFunction(n/3);

int val2 = recursvieFunction(n/3);

return val1 * val2;

}
𝑇 𝑛 = ቐ

2 if 𝑛 < 3

2𝑇
𝑛

3
+ 𝑛 otherwise

pollEV.com/cse373su19

Write a recurrence for the

running time of
recursiveFunction

Recurrence to Big-O

Alright what’s the big-O?

There’s another similarity between recursive functions and recursive code.

It’s still really hard to tell what the big-O is just by looking at it.

𝑇 𝑛 = ቐ
2 if 𝑛 < 3

2𝑇
𝑛

3
+ 𝑛 otherwise

I can’t tell what the big-O is. What do we do?

It’s ok.

Mathematicians and computer scientists have been hard at work.

And they’ve written books.

And the answer to our problem is in one of them.

Master Theorem

CSE 373 SP 18 - KASEY CHAMPION 12

𝑇 𝑛 = ቐ
𝑑 if 𝑛 is at most some constant

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 otherwise

Given a recurrence of the following form, where 𝑎, 𝑏, 𝑐, and 𝑑 are constants:

Where 𝑓 𝑛 is Θ 𝑛𝑐

𝑇 𝑛 ∈ Θ 𝑛𝑐log𝑏 𝑎 < 𝑐

log𝑏 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛𝑐 log 𝑛

log𝑏 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛log𝑏 𝑎

If

If

If

then

then

then

Master Theorem

𝑇 𝑛 = ቐ
𝑑 if 𝑛 is at most some constant

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 otherwise

Given a recurrence of the following form, where 𝑎, 𝑏, 𝑐, and 𝑑 are constants:

Where 𝑓 𝑛 is Θ 𝑛𝑐

𝑇 𝑛 ∈ Θ 𝑛𝑐log𝑏 𝑎 < 𝑐

log𝑏 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛𝑐 log 𝑛

log𝑏 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛log𝑏 𝑎

If

If

If

then

then

then

𝑇 𝑛 = ቐ
2 if 𝑛 < 3

2𝑇
𝑛

3
+ 𝑛 otherwise

log3 2 < 1
We’re in case 1
𝑇 𝑛 ∈ Θ(𝑛)

Binary Search Trees

Binary Search Trees

We have one more algorithm analysis topic…

But first a little bit about binary search trees.

Review: Trees!

A tree is a collection of nodes
- Each node has at most 1 parent and 0 or more children

Root node: the only node with no parent, “top” of
the tree

Leaf node: a node with no children

Edge: a pointer from one node to another

Subtree: a node and all it descendants

Height: the number of edges contained in the
longest path from root node to some leaf node

CSE 373 SP 18 - KASEY CHAMPION 16

1

2 5

3 6 7

4 8

Review: Maps

map: Holds a set of distinct keys and a collection of
values, where each key is associated with one value.
- a.k.a. "dictionary"

CSE 373 19 SU - ROBBIE WEBER

key value

“you" 22

key value

“in" 37

key value

“the" 56

key value

“at" 43

map.get("the") 56

Dictionary ADT

put(key, item) add item to

collection indexed with key

get(key) return item

associated with key

containsKey(key) return if key

already in use

remove(key) remove item

and associated key

size() return count of items

state

behavior

Set of items & keys

Count of items

supported operations:
- put(key, value): Adds a given item into

collection with associated key,

- if the map previously had a mapping
for the given key, old value is replaced

- get(key): Retrieves the value mapped to
the key

- containsKey(key): returns true if key is
already associated with value in map,
false otherwise

- remove(key): Removes the given key and
its mapped value

Implement a Dictionary

Binary Search Trees allow us to:
- quickly find what we’re looking for

- add and remove values easily

Let’s use them to implement dictionaries!

CSE 373 SP 18 - KASEY CHAMPION 18

10

“foo”

7

“bar”

12

“baz”

9

“sho”

5

“fo”

15

“sup”

13

“boo”

8

“bye”

1

“hi”

Binary Search Tree

Invariants
- Things that are always true.

- The way you make sure your data structure works and is efficient.

Binary Search Tree invariants:

-For every node with key 𝑘:

-The left subtree has only keys smaller than 𝑘.

-The right subtree has only keys greater than 𝑘.

CSE 373 SP 18 - KASEY CHAMPION 19

10

“foo”

7

“bar”

12

“baz”

9

“sho”

5

“fo”

15

“sup”

13

“boo”

8

“bye”

1

“hi”

BST Invariants

Why write down invariants?

They help us write methods?

How does get(key) work?

-Is the current node the one we’re looking for?

-Return it’s value

-Is the current node null?

-It’s not in there

-Is the current node’s key too small?

-Recurse on the right subtree

-Is the current node’s key too big?

-Recurse on the left subtree

Binary Search Tree invariants:

For every node with key 𝑘:

The left subtree has only keys smaller than 𝑘.

The right subtree has only keys greater than 𝑘.

How does put(key, value) work?

Let’s just put it anywhere?

No! Remember the invariants!

Also remember key might already be

in the dictionary.
find first

If key is in there, overwrite the value

Otherwise, wherever we ended up is

where the new node should go.

Are These Binary Search Trees?

2

3

8

6

9

4

52

73

9

8 10

6

1

BSTs as dictionaries

Let’s figure out the worst case of get() for two different states our BST could be in.

Perfectly balanced – for every node, its

descendants are split evenly between

left and right subtrees.

Degenerate – for every node, all of its

descendants are in the right subtree.

9

2

1 3

6

5 7

4

8

10

12

15

14

11 13

1

2

3

4

15

…

BSTs as dictionaries

Let’s figure out the worst case of get() for two different states our BST could be in.

Perfectly balanced – for every node, its

descendants are split evenly between

left and right subtrees.

9

2

1 3

6

5 7

4

8

10

12

15

14

11 13

get() is a recursive method!

𝑇 𝑛 = ቐ
𝑇

𝑛

2
+ 1 if 𝑛 > 1

3 otherwise

𝑇 𝑛 = ቐ
𝑑 if 𝑛 is at most some constant

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 otherwise

Where 𝑓 𝑛 is Θ 𝑛𝑐

log𝑏 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛𝑐 log 𝑛

log𝑏 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛log𝑏 𝑎

If

If

𝑇 𝑛 ∈ Θ 𝑛𝑐log𝑏 𝑎 < 𝑐If then

then

then

log2 1 = 0 = 𝑛0 Case 2

Θ(𝑛0 log 𝑛) = Θ(log 𝑛) .

BSTs as dictionaries

Let’s figure out the worst case of get() for two different states our BST could be in.

Degenerate – for every node, all of its

descendants are in the right subtree.

1

2

3

4

15

…

𝑇 𝑛 = ቐ
𝑑 if 𝑛 is at most some constant

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 otherwise

Where 𝑓 𝑛 is Θ 𝑛𝑐

log𝑏 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛𝑐 log 𝑛

log𝑏 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛log𝑏 𝑎

If

If

𝑇 𝑛 ∈ Θ 𝑛𝑐log𝑏 𝑎 < 𝑐If then

then

then

get() is a recursive method!

𝑇 𝑛 = ቊ
𝑇 𝑛 − 1 + 1 if 𝑛 > 1
3 otherwise

Master Theorem doesn’t apply!

I can’t tell what the big-O is. What do we do?

It’s ok.

Mathematicians and computer scientists have been hard at work.

And they’ve written books.

And I’ve checked them all

This meme is outdated/unfunny.

This meme is funny.

Don’t Panic

The books don’t have a nice theorem;

They do have methods for figuring out the big-O.

Unrolling

𝑇 𝑛 = ቊ
𝑇 𝑛 − 1 + 1 if 𝑛 > 1
3 otherwise

Idea: keep plugging the definition of 𝑇() into itself.

Until you find the pattern and can hit the base case.

Unrolling

𝑇 𝑛 =

𝑇 𝑛 = ቊ
𝑇 𝑛 − 1 + 1 if 𝑛 > 1
3 otherwise

𝑇 𝑛 − 1 + 1
[𝑇 𝑛 − 1 − 1 + 1] + 1 = 𝑇 𝑛 − 2 + 1 + 1
𝑇 𝑛 − 2 − 1 + 1 + 1 + 1 = 𝑇 𝑛 − 3 + 1 + 1 + 1
𝑇 𝑛 − 3 − 1 + 1 + 1 + 1 + 1 = 𝑇 𝑛 − 4 + 1 + 1 + 1 + 1

𝑇 𝑛 − 𝑖 + 𝑖 for any 𝑖.
The thing we don’t understand is 𝑇(). We can get rid of it by hitting the base case.

Set 𝑖 so that 𝑛 − 𝑖 = 1.  𝑖 = 𝑛 − 1

𝑇 𝑛 − 𝑛 − 1 + 𝑛 − 1

𝑇 1 + 𝑛 − 1 = 3 + 𝑛 − 1 = 𝑛 + 2

𝑇 𝑛 = 𝑛 + 2

We did it!

For BSTs:

If we’re in the case where everything is balanced, we have a much better dictionary.

But if have that degenerate BST, we’re no better off than with an array or linked list.

For analyzing code:

We didn’t just get the big-Θ, we actually got an exact expression too!

Let’s try another one!

More Practice

public int dumbFindMax(int[] arr, int hi){

if(hi == 0)

return arr[0];

int maxInd = 0;

for(int i=0; i<hi; i++){

if(arr[i] > arr[maxInd])

maxInd=i;

}

return Math.max(arr[maxInd], dumbFindMax(arr, hi-1));

}

Write a recurrence to describe

the running time of this

function, then find the big-Θ for

the running time.

𝑇 𝑛 = ቊ
𝑇 𝑛 − 1 + 𝑛 if 𝑛 ≥ 2
1 otherwise

𝑇 𝑛 = ቊ
𝑇 𝑛 − 1 + 𝑛 if 𝑛 ≥ 2
1 otherwise

𝑇 𝑛 − 1 + 𝑛
𝑇 𝑛 − 1 − 1 + 𝑛 − 1 + 𝑛 = T n − 2 + n − 1 + n
𝑇 𝑛 − 3 + 𝑛 − 2 + 𝑛 − 1 + 𝑛
𝑇 𝑛 − 4 + 𝑛 − 3 + 𝑛 − 2 + 𝑛 − 1 + 𝑛

𝑇 𝑛 − 𝑖 + ෍

𝑗=0

𝑖−1

𝑛 − 𝑗

Plug in 𝑖 so 𝑛 − 𝑖 is 1

𝑇 𝑛 − (𝑛 − 1) + ෍

𝑗=0

𝑛−1−1

𝑛 − 𝑗 =

1 + ෍

𝑗=0

𝑛−2

𝑛 − 𝑗 = 1 + ෍

𝑗=0

𝑛−2

𝑛 − ෍

𝑗=0

𝑛−2

𝑗

= 1 + 𝑛 𝑛 − 1 − ෍

𝑗=0

𝑛−2

𝑗

= 1 + 𝑛 𝑛 − 1 −
𝑛 − 1 𝑛 − 2

2

= 𝑛2 − 𝑛 −
𝑛2

2
+

3𝑛

2
− 1

∈ Θ(𝑛2)

𝑇 𝑛 = ቊ
𝑇 𝑛 − 1 + 𝑛 if 𝑛 ≥ 2
1 otherwise

𝑇 𝑛 = ൝
3𝑇

𝑛

4
+ 𝑛2 if 𝑛 > 1

4 otherwise

We can unroll to get the answer here, but it’s really easy to make a small
algebra mistake.

If that happens we might not be able to find the pattern
-Or worse find the wrong pattern.

There’s a way to organize our algebra so it’s easier to find the pattern.

𝑇
𝑛

4
+ 𝑇

𝑛

4
+ 𝑇

𝑛

4
+ 𝑛2

𝑇 𝑛

𝑇
𝑛

16
+ 𝑇

𝑛

16
+ 𝑇

𝑛

16
+

𝑛

4

2

𝑇
𝑛

4 𝑇
𝑛

4
𝑇

𝑛

4
𝑇

𝑛

16
+ 𝑇

𝑛

16
+ 𝑇

𝑛

16
+

𝑛

4

2
𝑇

𝑛

16
+ 𝑇

𝑛

16
+ 𝑇

𝑛

16
+

𝑛

4

2

Tree Method Practice

39

𝑇 𝑛 =
4 𝑤ℎ𝑒𝑛 𝑛 ≤ 1

3𝑇
𝑛

4
+ 𝑛2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

n2

n

4

2

… …

n

4

2 n

4

2

𝑇
𝑛

16
𝑇

𝑛

16
𝑇

𝑛

16
𝑇

𝑛

16
𝑇

𝑛

16
𝑇

𝑛

16
𝑇

𝑛

16
𝑇

𝑛

16
𝑇

𝑛

16

… … …… … …… … …… … …… … …… … …… … …… … ……

4 4

Answer the following

questions:

1. What is the size of the

input on level 𝑖?
2. What is the work

done by each node

on the 𝑖𝑡ℎ recursive

level

3. What is the number

of nodes at level 𝑖?
4. What is the total work

done at the i^th

recursive level?

5. What value of 𝑖 does

the last level occur?

6. What is the total work

across the base case

level?

EXAMPLE PROVIDED BY CS 161 – JESSICA SU

HTTPS://WEB.STANFORD.EDU/CLASS/ARCHIVE/CS/CS161/CS161.1168/LECTURE3.PDF

𝑛

16

2 𝑛

16

2 𝑛

16

2 𝑛

16

2 𝑛

16

2 𝑛

16

2 𝑛

16

2 𝑛

16

2 𝑛

16

2

https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture3.pdf

Tree Method Practice

CSE 373 SP 18 - KASEY CHAMPION 40

Level (i)
Number of

Nodes

Work per

Node

Work per

Level

0 1 𝑛2 𝑛2

1 3
𝑛

4

2 3

42
𝑛2

2 9
𝑛

42

2 32

44
𝑛2

base 3log4𝑛 4 12log4𝑛

1. What is the size of the input on level 𝑖?

2. What is the work done by each node on the 𝑖𝑡ℎ

recursive level?

3. What is the number of nodes at level 𝑖?

4. What is the total work done at the i^th

recursive level?

5. What value of 𝑖 does the last level occur?

6. What is the total work across the base case

level?

𝑛

4

𝑖

𝑛

4𝑖

2

𝑇 𝑛 =
4 𝑤ℎ𝑒𝑛 𝑛 ≤ 1

3𝑇
𝑛

4
+ 𝑐𝑛2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Combining it all together…

3𝑖

3𝑖
𝑛

4

𝑖 2

=
3

16

𝑖

𝑛2

𝑇 𝑛 = ෍

𝑖=0

log4 𝑛 −1
3

16

𝑖

𝑛2 + 4𝑛log
4
3

𝑛

4𝑖 = 1 𝑛 = 4𝑖
 𝑖 = log4 𝑛

power of a log

𝑥log𝑏 𝑦 = 𝑦log𝑏 𝑥
4 ⋅ 𝑛log4 3

5 Minutes

3log4 𝑛 ⋅ 4

Tree Method Practice

CSE 373 SP 18 - KASEY CHAMPION 41

𝑇 𝑛 = ෍

𝑖=0

log4 𝑛 −1
3

16

𝑖

𝑛2 + 4𝑛log
4
3

𝑇 𝑛 = 𝑛2

3
16

log4 𝑛

− 1

3
16

− 1
+ 4𝑛log

4
3

𝑇 𝑛 ∈ 𝑂(𝑛2)

෍

𝑖=𝑎

𝑏

𝑐𝑓(𝑖) = 𝑐 ෍

𝑖=𝑎

𝑏

𝑓(𝑖)

factoring out a constant

𝑇 𝑛 = 𝑛2 ෍

𝑖=0

log4 𝑛 −1
3

16

𝑖

+ 4𝑛log
4
3

෍

𝑖=0

𝑛−1

𝑥𝑖 =
𝑥𝑛 − 1

𝑥 − 1

finite geometric series

So what’s the big-Θ…

𝑇 𝑛 = 𝑛2 −
16

13

3

16

log4 𝑛

+
16

13
𝑛2 + 4𝑛log

4
3

Closed form:

𝑇 𝑛 = 𝑛2 −
16

13
𝑛 log4

3
16 +

16

13
𝑛2 + 4𝑛log

4
3

