Lecture 5: Big-O and Cases
Administrivia

No section tomorrow (Independence Day)

Friday’s lecture will be primarily lead by TAs as a replacement section.
- Will still be recorded.

Practicing Big-O stuff!

Project 0 due tonight at 11:59 PM.

If you want to use a late day, fill out the form (linked on projects section of webpage).

Project 1 out very soon!
- Check you email (and spam folder) for a link to your gitlab repo.
- Make sure you know who your partner is (go to repo, settings [in left sidebar], members. Will see course staff as “owners” and you/your partner as “maintainers”
- Forget to fill out partner form/something went wrong? Make a private post on piazza.
Project notes

How to effectively work on partner projects:

Pair program! See the document on the webpage.
- Two brains is better than one when debugging
- We expect you to understand the full projects, not just half of the projects.

Meet in-person with your partner.

Please don’t:
- Come to office hours and say “my partner wrote this code, I don’t understand it. Please help me debug it.”
- Just split the project in-half and each do half (or alternate projects)
- Be mean to your partner.

Double check runners! (sometimes the checkmark appears when it shouldn’t)
Passing the runners does not guarantee full credit.
Start early!
Where Are We?

We’re using big-O to analyze code.

So far:
- Going from a set of code, to a code model $f(n)$.
- From $f(n)$, find the big-O,
- Formally prove big-O

Today
- More big-O-like tools: what are Ω, Θ?
- How do we model code with complicated if/else branches?

Next week
- Recursive code
Find a model $f(n)$ for the running time of this code on input n. What’s the Big-O?

```java
boolean isPrime(int n){
    int toTest = 2;
    while(toTest < n){
        if(n % toTest == 0)
            return false;
        else
            toTest++;
    }
    return true;
}
```

Remember, $f(n)$ = the number of basic operations performed on the input n.

Operations per iteration: let’s just call it 1 to keep all the future slides simpler.

Number of iterations?
- One less than the smallest divisor of n
Is the running time of the code $O(1)$ or $O(n)$?

More than half the time we need 3 or fewer iterations. Is it $O(1)$?

But there's still always another number where the code takes n iterations. So $O(n)$?

This is why we have definitions!
The running time is $O(n)$.
Can you find constants c and n_0?

How about $c = 1$ and $n_0 = 5$,
$f(n) =$ smallest divisor of $n \leq 1 \cdot n$ for $n \geq 5$

It’s $O(n)$ but not $O(1)$

Is the running time $O(1)$?
Can you find constants c and n_0?

No! Choose your value of c. I can find a prime number k bigger than c.
And $f(k) = k > c \cdot 1$ so the definition isn’t met!
Big-O isn’t everything

Our prime finding code is $O(n)$. But so is, for example, printing all the elements of a list.

Your experience running these two pieces of code is going to be very different. It’s disappointing that the $O()$ are the same – that’s not very precise. Could we have some way of pointing out the list code always takes AT LEAST n operations?
Big-Ω [Omega]

\(f(n) \) is \(\Omega(g(n)) \) if there exist positive constants \(c, n_0 \) such that for all \(n \geq n_0 \),
\[
f(n) \geq c \cdot g(n)
\]

\(f_1(n) \) is not \(\Omega(n) \)

For any \(c, n_0 \) you suggest, I’ll take \(k \) to be an even number such that \(k > 1/c \). Then
\[
f(k) = 1 = \frac{c}{c} < ck = c \cdot g(k)
\]

\(f_2(n) \) is \(\Omega(n) \)
O, and Omega, and Theta [oh my?]

Big-O is an **upper bound**
- My code takes at most this long to run

Big-Omega is a **lower bound**
- My code takes at least this long to run

Big Theta is “**equal to**”
- My code takes “exactly”* this long to run
 - *Except for constant factors and lower order terms

<table>
<thead>
<tr>
<th>Big-O</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n)) is (O(g(n))) if there exist positive constants (c, n_0) such that for all (n \geq n_0), (f(n) \leq c \cdot g(n))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Big-Omega</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n)) is (\Omega(g(n))) if there exist positive constants (c, n_0) such that for all (n \geq n_0), (f(n) \geq c \cdot g(n))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Big-Theta</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n)) is (\Theta(g(n))) if (f(n)) is (O(g(n))) and (f(n)) is (\Omega(g(n))).</td>
</tr>
</tbody>
</table>
Viewing O as a class

Sometimes you’ll see big-O defined as a family or set of functions.

Big-O (alternative definition)

O(g(n)) is the set of all functions f(n) such that there exist positive constants c, n₀ such that for all n ≥ n₀, f(n) ≤ c · g(n)

For that reason, we sometimes write f(n) ∈ O(g(n)) instead of “f(n) is O(g(n))”. Other people write “f(n) = O(g(n))” to mean the same thing. The set of all functions that run in linear time (i.e. O(n)) is a “complexity class.” We never write O(5n) or O(n + 1) instead of O(n) – they’re the same thing! It’s like writing $\frac{6}{2}$ instead of 3. It just looks weird.
Examples

<table>
<thead>
<tr>
<th>$4n^2 \in \Omega(1)$</th>
<th>$4n^2 \in O(1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>false</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$4n^2 \in \Omega(n)$</th>
<th>$4n^2 \in O(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>false</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$4n^2 \in \Omega(n^2)$</th>
<th>$4n^2 \in O(n^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$4n^2 \in \Omega(n^3)$</th>
<th>$4n^2 \in O(n^3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$4n^2 \in \Omega(n^4)$</th>
<th>$4n^2 \in O(n^4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

Big-O

$f(n) \in O(g(n))$ if there exist positive constants c, n_0 such that for all $n \geq n_0$,

\[f(n) \leq c \cdot g(n) \]

Big-Omega

$f(n) \in \Omega(g(n))$ if there exist positive constants c, n_0 such that for all $n \geq n_0$,

\[f(n) \geq c \cdot g(n) \]

Big-Theta

$f(n) \in \Theta(g(n))$ if $f(n)$ is $O(g(n))$ and $f(n)$ is $\Omega(g(n))$.
Practice

5n + 3 is $O(n)$ True
n is $O(5n + 3)$ True
5n + 3 = $O(n)$ True
$n^2 \in O(1)$ False
$n^2 \in O(n)$ False
$n^2 \in O(n^2)$ True
$n^2 \in O(n^3)$ True
$n^2 \in O(n^{100})$ True

What are the answers to the first two questions?

Big-O

$f(n) \in O(g(n))$ if there exist positive constants c, n_0 such that for all $n \geq n_0$,

\[f(n) \leq c \cdot g(n) \]

Big-Omega

$f(n) \in \Omega(g(n))$ if there exist positive constants c, n_0 such that for all $n \geq n_0$,

\[f(n) \geq c \cdot g(n) \]

Big-Theta

$f(n) \in \Theta(g(n))$ if $f(n)$ is $O(g(n))$ and $f(n)$ is $\Omega(g(n))$.

pollEV.com/cse373su19
Simplified, tight big-O

Why not always just say $f(n)$ is $O(f(n))$.

It’s always true! (Take $c = 1, n_0 = 1$).

The goal of big-O/Ω/Θ is to group similar functions together.

We want a simple description of f, if we wanted the full description of f we wouldn’t use O.
Simplified, tight big-O

In this course, we’ll essentially use:
- Polynomials \(n^c \) where \(c \) is a constant: e.g. \(n, n^3, \sqrt{n}, 1 \)
- Logarithms \(\log n \)
- Exponents \(c^n \) where \(c \) is a constant: e.g. \(2^n, 3^n \)
- Combinations of these (e.g. \(\log(\log(n)), n \log n, (\log(n))^2 \))

For this course:
- A “tight big-O” is the slowest growing function among those listed.
- A “tight big-\(\Omega \)” is the fastest growing function among those listed.
- (A \(\Theta \) is always tight, because it’s an “equal to” statement)
- A “simplified” big-O (or Omega or Theta)
 - Does not have any dominated terms.
 - Does not have any constant factors – just the combinations of those functions.
We defined $f(n)$ to be (our model for) the number of operations the code does on an input of size n.

$f(n)$ doesn’t always have a nice formula, but so far if I tell you n, you can tell me $f(n)$.

Knowing n isn’t always enough to know how long our code will take to run.
Linear Search

/* given an array and int toFind, return index where toFind is located, or -1 if not in array.*/

int linearSearch(int[] arr, int toFind) {
 for(int i=0; i < arr.length; i++) {
 if(arr[i] == toFind)
 return i;
 }
 return -1;
}
Cases

The number of operations doesn’t depend just on n.
Even once you fix n (the size of the array) there are still a number of cases to consider.

If toFind is in $\text{arr}[0]$, we’ll only need one iteration, $f(n) = 4$.
If toFind is not in arr, we’ll need n iterations. $f(n) = 3n + 1$.
And there are a bunch of cases in-between.
Linear Search Models
For a given n, prime checker had only one model. For a given n, Linear Search has multiple possible models.
Cases

The number of operations doesn’t depend just on n.

Even once you fix n (the size of the array) there are still a number of cases to consider.

If `toFind` is in `arr[0]`, we’ll only need one iteration, $f(n) = 4$.

If `toFind` is not in `arr`, we’ll need n iterations. $f(n) = 3n + 1$.

And there are a bunch of cases in-between.

So, which is the right model?

It depends on what you care about.
Cases

Usually we care about the longest our code could run on an input of size n. This is **worst-case** analysis.

But sometimes we care about the fastest our code could finish on an input of size n. This is **best-case** analysis.

For `linearSearch`, the model for the worst case is $f(n) = 3n + 1$

The model for the best case is $f(n) = 4$.
Caution

Keep separate the ideas of best/worse case and O, Ω, Θ.

Big-O is an upper bound, regardless of whether we’re doing worst or best-case analysis.

Worst case vs. best case is a question once we’ve fixed n to choose the state of our data that decides how the code will evolve.

What is the exact state of our data structure, which value did we choose to insert? O, Ω, Θ are choices of how to summarize the information in the model.
<table>
<thead>
<tr>
<th></th>
<th>Big-O</th>
<th>Big-Omega</th>
<th>Big-Theta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst Case</td>
<td>No matter what, as n gets bigger, the code takes at most this much time</td>
<td>Under certain circumstances, as n gets bigger, the code takes at least this much time</td>
<td>On the worst input, as n gets bigger, the code takes precisely this much time (up to constants).</td>
</tr>
<tr>
<td>Best Case</td>
<td>Under certain circumstances, even as n gets bigger, the code takes at most this much time</td>
<td>No matter what, even as n gets bigger, the code takes at least this much time.</td>
<td>On the best input, even as n gets bigger, the code takes precisely this much time (up to constants).</td>
</tr>
</tbody>
</table>

“worst input”: input that causes the code to run slowest.
<table>
<thead>
<tr>
<th></th>
<th>Big-O</th>
<th>Big-Omega</th>
<th>Big-Theta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst Case</td>
<td>No matter what, as (n) gets bigger, the code takes at most this much time</td>
<td>Under certain circumstances, as (n) gets bigger, the code takes at least this much time</td>
<td>On the worst input, as (n) gets bigger, the code takes precisely this much time (up to constants)</td>
</tr>
<tr>
<td>Best Case</td>
<td>Under certain circumstances, even as (n) gets bigger, the code takes at most this much time.</td>
<td>No matter what, even as (n) gets bigger, the code takes at least this much time.</td>
<td>On the best input, even as (n) gets bigger, the code takes precisely this much time (up to constants)</td>
</tr>
</tbody>
</table>

“worst input”: input that causes the code to run slowest.
<table>
<thead>
<tr>
<th></th>
<th>Big-O</th>
<th>Big-Omega</th>
<th>Big-Theta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst Case</td>
<td>No matter what, as n gets bigger, the code takes at most this much time</td>
<td>Under certain circumstances, as n gets bigger, the code takes at least this much time</td>
<td>On the worst input, as n gets bigger, the code takes precisely this much time (up to constants).</td>
</tr>
<tr>
<td>Best Case</td>
<td>Under certain circumstances, even as n gets bigger, the code takes at most this much time.</td>
<td>No matter what, even as n gets bigger, the code takes at least this much time.</td>
<td>On the best input, even as n gets bigger, the code takes precisely this much time (up to constants).</td>
</tr>
</tbody>
</table>

“worst input”: input that causes the code to run slowest.
Other cases

“Assume X won’t happen case”
- Assume our array won’t need to resize is the most common.

“Average case”
- Assume your input is random
- Need to specify what the possible inputs are and how likely they are.
 - \(f(n) \) is now the average number of steps on a random input of size \(n \).

“In-practice case”
- This isn’t a real term. (I just made it up)
- Make some reasonable assumptions about how the real-world is probably going to work
 - We’ll tell you the assumptions, and won’t ask you to come up with these assumptions on your own.
 - Then do worst-case analysis under those assumptions.

All of these can be combined with any of \(O, \Omega, \) and \(\Theta \)!
How to do case analysis

1. Look at the code, understand how thing could change depending on the input.
 - How can you exit loops early?
 - Can you return (exit the method) early?
 - Are some if/else branches much slower than others?

2. Figure out what inputs can cause you to hit the (best/worst) parts of the code.

3. Now do the analysis like normal!
/* given an array of integers, count the number of positive integers that appear only once */
//There are more efficient versions of this.

int countUniquePositives(int[] arr){
 int count = 0;
 for(int i=0; i<arr.length; i++){
 if(arr[i] <= 0)
 break;
 else{
 boolean repeat = false;
 for(int j=0; j < arr.length; j++){
 if(i!=j && arr[i] == arr[j])
 repeat = true;
 }
 if(!repeat)
 count++;
 }
 }
 return count;
}
Dictionaries and best/worst case analysis
Dictionaries (aka Maps)

Every Programmer’s Best Friend

You’ll probably use one in almost every programming project.
- Because it’s hard to make a big project without needing one sooner or later.
Review: Maps

map: Holds a set of distinct keys and a collection of values, where each key is associated with one value.
- a.k.a. "dictionary"

Dictionary ADT

state
- Set of items & keys
- Count of items

behavior
- `put(key, item)`: add item to collection indexed with key associated with key
- `get(key)`: return item already in use
- `remove(key)`: remove item and associated key
- `size()`: return count of items

supported operations:
- `put(key, value)`: Adds a given item into collection with associated key,
 - if the map previously had a mapping for the given key, old value is replaced
- `get(key)`: Retrieves the value mapped to the key
- `containsKey(key)`: returns true if key is already associated with value in map, false otherwise
- `remove(key)`: Removes the given key and its mapped value
Implementing a Dictionary with an Array

Dictionary ADT

state
- Set of items & keys
- Count of items

behavior
- `put(key, item)` add item to collection indexed with key
- `get(key)` return item associated with key
- `containsKey(key)` return if key already in use
- `remove(key)` remove item and associated key
- `size()` return count of items

ArrayDictionary<K, V>

state
- `Pair<K, V>[] data`

behavior
- `put(key, item)` find key, overwrite value if there. Otherwise create new pair, add to next available spot, grow array if necessary
- `get(key)` scan all pairs looking for given key, return associated item if found
- `containsKey(key)` scan all pairs, return if key is found
- `remove(key)` scan all pairs, replace pair to be removed with last pair in collection
- `size()` return count of items in dictionary

Big O Analysis – Worst case
- `put()` O(N) linear
- `get()` O(N) linear
- `containsKey()` O(N) linear
- `remove()` O(N) linear
- `size()` O(1) constant

Big O Analysis – Best case
- `put()` O(1) constant
- `get()` O(1) constant
- `containsKey()` O(1) constant
- `remove()` O(1) constant
- `size()` O(1) constant

```plaintext
put('a', 1)
p(put('b', 2)
p(put('c', 3)
p(put('d', 4)
remove('b')
p(put('a', 97)
```
Implementing a Dictionary with Nodes

Dictionary ADT

state
Set of items & keys
Count of items

behavior
- put(key, item) add item to collection indexed with key
- get(key) return item associated with key already in use
- containsKey(key) return if key already in use
- remove(key) remove item and associated key
- size() return count of items

put('a', 1)
put('b', 2)
put('c', 3)
put('d', 4)
remove('b')
put('a', 97)

LinkedDictionary<K, V>

state
- front
- size

behavior
- put if key is unused, create new with pair, add to front of list, else replace with new value
- get scan all pairs looking for given key, return associated item if found
- containsKey scan all pairs, return if key is found
- remove scan all pairs, skip pair to be removed
- size return count of items in dictionary

Big O Analysis – Worst Case

<table>
<thead>
<tr>
<th>Operation</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>put()</td>
<td>O(N) linear</td>
</tr>
<tr>
<td>get()</td>
<td>O(N) linear</td>
</tr>
<tr>
<td>containsKey()</td>
<td>O(N) linear</td>
</tr>
<tr>
<td>remove()</td>
<td>O(N) linear</td>
</tr>
<tr>
<td>size()</td>
<td>O(1) constant</td>
</tr>
</tbody>
</table>

Big O Analysis – Best Case

<table>
<thead>
<tr>
<th>Operation</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>put()</td>
<td>O(1) constant</td>
</tr>
<tr>
<td>get()</td>
<td>O(1) constant</td>
</tr>
<tr>
<td>containsKey()</td>
<td>O(1) constant</td>
</tr>
<tr>
<td>remove()</td>
<td>O(1) constant</td>
</tr>
<tr>
<td>size()</td>
<td>O(1) constant</td>
</tr>
</tbody>
</table>
Dictionaries

Running times summary:

Worst case is slow for EVERY interesting operation.
For lists, we had usually one slow operation.

Dictionaries are really useful.
We’ll spend a week-and-a-half designing faster versions.
-But first, more big-O.