
Lecture 5:
Big-O and Cases

CSE 373 – Data Structures and

Algorithms

CSE 373 19 SU - ROBBIE WEBER

Administrivia

No section tomorrow (Independence Day)

Friday’s lecture will be primarily lead by TAs as a replacement section.
- Will still be recorded.

Practicing Big-O stuff!

Project 0 due tonight at 11:59 PM.

If you want to use a late day, fill out the form (linked on projects section of webpage).

Project 1 out very soon!
- Check you email (and spam folder) for a link to your gitlab repo.

- Make sure you know who your partner is (go to repo, settings [in left sidebar], members. Will see course staff
as “owners” and you/your partner as “maintainers”

- Forget to fill out partner form/something went wrong? Make a private post on piazza.

CSE 373 19 SU - ROBBIE WEBER

Project notes

How to effectively work on partner projects:

Pair program! See the document on the webpage.
- Two brains is better than one when debugging

- We expect you to understand the full projects, not just half of the projects.

Meet in-person with your partner.

Please don’t:
- Come to office hours and say “my partner wrote this code, I don’t understand it. Please help me debug it.”

- Just split the project in-half and each do half (or alternate projects)

- Be mean to your partner.

Double check runners! (sometimes the checkmark appears when it shouldn’t)

Passing the runners does not guarantee full credit.

CSE 373 19 SU - ROBBIE WEBER

https://docs.google.com/document/d/1rLn4H3-jvDOqI16EqwzbXKF4Jx-cA6wiLaM1lrPO5tQ/edit

Project Notes

Start early!

CSE 373 19 SU - ROBBIE WEBER

Where Are We?

We’re using big-O to analyze code.

So far:
- Going from a set of code, to a code model 𝑓(𝑛).

- From 𝑓 𝑛 , find the big-O,

- Formally prove big-O

Today
- More big-O-like tools: what are Ω, Θ?

- How do we model code with complicated if/else branches?

Next week
- Recursive code

CSE 373 19 SU - ROBBIE WEBER

Uncharted Waters

Find a model 𝑓 𝑛 for the running time of this code on input 𝑛. What’s the Big-O?
boolean isPrime(int n){

int toTest = 2;
while(toTest < n){

if(n % toTest == 0)
return false;

else
toTest++;

}
return true;

}

Operations per iteration: let’s just call it 1 to keep all the future slides simpler.

Number of iterations?

- One less than the smallest divisor of 𝑛

CSE 373 19 SU - ROBBIE WEBER

Remember, 𝑓(𝑛) = the

number of basic operations

performed on the input 𝑛.

Prime Checking Runtime

CSE 373 19 SU - ROBBIE WEBER

Is the running time of

the code 𝑂 1 or 𝑂 𝑛 ?

More than half the time

we need 3 or fewer

iterations. Is it 𝑂(1)?

But there’s still always

another number where

the code takes 𝑛
iterations. So 𝑂 𝑛 ?

This is why we have definitions!

𝑓(𝑛)

CSE 373 19 SU - ROBBIE WEBER

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

Is the running time 𝑂(𝑛)?
Can you find constants 𝑐 and 𝑛0?

How about 𝑐 = 1 and 𝑛0 = 5,

𝑓 𝑛 =smallest divisor of 𝑛 ≤ 1 ⋅ 𝑛 for 𝑛 ≥ 5

Is the running time 𝑂(1)?
Can you find constants 𝑐 and 𝑛0?

No! Choose your value of 𝑐. I can find a prime

number 𝑘 bigger than 𝑐.
And 𝑓 𝑘 = 𝑘 > 𝑐 ⋅ 1 so the definition isn’t met!

It’s 𝑂(𝑛) but not 𝑂 1

𝑓(𝑛)

Big-O isn’t everything

Our prime finding code is 𝑂(𝑛). But so is, for example, printing all the elements of a list.

CSE 373 19 SU - ROBBIE WEBER

Your experience running these two pieces of code is going to be very different.

It’s disappointing that the 𝑂() are the same – that’s not very precise.

Could we have some way of pointing out the list code always takes AT LEAST 𝑛 operations?

Big-Ω [Omega]

CSE 373 19 SU - ROBBIE WEBER

𝑓(𝑛) is Ω(𝑔 𝑛) if there exist positive

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0,

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓1 𝑛 is not Ω(𝑛) 𝑓2 𝑛 is Ω(𝑛)

For any 𝑐, 𝑛0 you suggest, I’ll take 𝑘 to be an even

number such that 𝑘 > 1/𝑐. Then

𝑓 𝑘 = 1 =
𝑐

𝑐
< 𝑐𝑘 = 𝑐 ⋅ 𝑔(𝑘)

O, and Omega, and Theta [oh my?]

Big-O is an upper bound

-My code takes at most this long to run

Big-Omega is a lower bound

-My code takes at least this long to run

Big Theta is “equal to”
- My code takes “exactly”* this long to run

- *Except for constant factors and lower order terms

CSE 373 19 SU - ROBBIE WEBER

𝑓(𝑛) is Ω(𝑔 𝑛) if there exist positive constants

𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0,

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) is Θ(𝑔 𝑛) if

𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).

Big-Theta

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

Viewing O as a class

Sometimes you’ll see big-O defined as a family or set of functions.

CSE 373 19 SU - ROBBIE WEBER

O(𝑔 𝑛) is the set of all functions 𝑓 𝑛 such that

there exist positive constants 𝑐, 𝑛0 such that for

all 𝑛 ≥ 𝑛0, 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O (alternative definition)

For that reason, we sometimes write 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 instead of “𝑓 𝑛 is 𝑂(𝑔 𝑛)”.

Other people write “𝑓 𝑛 = 𝑂 𝑔 𝑛 ” to mean the same thing.

The set of all functions that run in linear time (i.e. 𝑂(𝑛)) is a “complexity class.”

We never write 𝑂(5𝑛) or 𝑂 𝑛 + 1 instead of 𝑂(𝑛) – they’re the same thing!

It’s like writing
6

2
instead of 3. It just looks weird.

Examples

4n2 ∈ Ω(1)

true

4n2 ∈ Ω(n)

true

4n2 ∈ Ω(n2)

true

4n2 ∈ Ω(n3)

false

4n2 ∈ Ω(n4)

false

CSE 373 19 SU - ROBBIE WEBER

4n2 ∈ O(1)

false

4n2 ∈ O(n)

false

4n2 ∈ O(n2)

true

4n2 ∈ O(n3)

true

4n2 ∈ O(n4)

true

𝑓(𝑛) ∈ 𝑂(𝑔 𝑛) if there exist positive

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

𝑓(𝑛) ∈ Ω(𝑔 𝑛) if there exist positive

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0,

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) ∈ Θ(𝑔 𝑛) if

𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).

Big-Theta

Practice

5n + 3 is O(n)

n is O(5n + 3)

5n + 3 = O(n)

n2 ∈ O(1)

n2 ∈ O(n)

n2 ∈ O(n2)

n2 ∈ O(n3)

n2 ∈ O(n100)

CSE 373 19 SU - ROBBIE WEBER

True

True

True

False

False

True

True

True

3 Minutes

𝑓(𝑛) ∈ 𝑂(𝑔 𝑛) if there exist positive

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

𝑓(𝑛) ∈ Ω(𝑔 𝑛) if there exist positive

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0,

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) ∈ Θ(𝑔 𝑛) if

𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).

Big-Theta

pollEV.com/cse373su19

What are the answers to

the first two questions?

Simplified, tight big-O

Why not always just say 𝑓 𝑛 is 𝑂 𝑓 𝑛 .

It’s always true! (Take 𝑐 = 1, 𝑛0 = 1).

The goal of big-O/Ω/Θ is to group similar functions together.

We want a simple description of 𝑓, if we wanted the full description of 𝑓 we
wouldn’t use 𝑂

CSE 373 19 SU - ROBBIE WEBER

Simplified, tight big-O

In this course, we’ll essentially use:
- Polynomials (𝑛𝑐 where 𝑐 is a constant: e.g. 𝑛, 𝑛3, 𝑛, 1)

- Logarithms log 𝑛

- Exponents (𝑐𝑛 where 𝑐 is a constant: e.g. 2𝑛, 3𝑛)

- Combinations of these (e.g. log log 𝑛 , 𝑛 log 𝑛 , log n
2
)

For this course:

-A “tight big-O” is the slowest growing function among those listed.

-A “tight big-Ω” is the fastest growing function among those listed.

-(A Θ is always tight, because it’s an “equal to” statement)

-A “simplified” big-O (or Omega or Theta)

-Does not have any dominated terms.

-Does not have any constant factors – just the combinations of those functions.

CSE 373 19 SU - ROBBIE WEBER

Cases

We defined 𝑓(𝑛) to be (our model for) the number of operations the code does on an input
of size 𝑛.

𝑓(𝑛) doesn’t always have a nice formula, but so far if I tell you 𝑛, you can tell me 𝑓(𝑛).

Knowing 𝑛 isn’t always enough to know how long our code will take to run.

CSE 373 19 SU - ROBBIE WEBER

Linear Search

/* given an array and int toFind, return index where toFind is located, or -1 if not in array.*/

int linearSearch(int[] arr, int toFind){

for(int i=0; i < arr.length; i++){

if(arr[i] == toFind)

return i;

}

return -1;

}

CSE 373 19 SU - ROBBIE WEBER

Cases

The number of operations doesn’t depend just on 𝑛.

Even once you fix 𝑛 (the size of the array) there are still a number of cases to consider.

If toFind is in arr[0], we’ll only need one iteration, 𝑓 𝑛 = 4.

If toFind is not in arr, we’ll need 𝑛 iterations. 𝑓 𝑛 = 3𝑛 + 1.

And there are a bunch of cases in-between.

CSE 373 19 SU - ROBBIE WEBER

Linear Search Models

CSE 373 19 SU - ROBBIE WEBER

Prime Checker Linear Search

For a given 𝑛, prime checker had only one model.

For a given 𝑛, Lienar Search has multiple possible models.

CSE 373 19 SU - ROBBIE WEBER

Cases

The number of operations doesn’t depend just on 𝑛.

Even once you fix 𝑛 (the size of the array) there are still a number of cases to consider.

If toFind is in arr[0], we’ll only need one iteration, 𝑓 𝑛 = 4.

If toFind is not in arr, we’ll need 𝑛 iterations. 𝑓 𝑛 = 3𝑛 + 1.

And there are a bunch of cases in-between.

So, which is the right model?

It depends on what you care about.

CSE 373 19 SU - ROBBIE WEBER

Cases

Usually we care about the longest our code could run on an input of size 𝑛.

This is worst-case analysis.

But sometimes we care about the fastest our code could finish on an input of size 𝑛.

This is best-case analysis.

For linearSearch, the model for the worst case is 𝑓 𝑛 = 3𝑛 + 1

The model for the best case is 𝑓 𝑛 = 4.

CSE 373 19 SU - ROBBIE WEBER

Caution
Keep separate the ideas of best/worse case and 𝑂,Ω, Θ.

Big-𝑂 is an upper bound, regardless of whether we’re doing worst or best-case

analysis.

Worst case vs. best case is a question once we’ve fixed 𝒏 to choose the state of our

data that decides how the code will evolve.

What is the exact state of our data structure, which value did we choose to insert?

𝑂,Ω, Θ are choices of how to summarize the information in the model.

CSE 373 19 SU - ROBBIE WEBER

Big-O Big-Omega Big-Theta

Worst Case No matter what, as 𝑛
gets bigger, the code

takes at most this much

time

Under certain

circumstances, as 𝑛 gets

bigger, the code takes

at least this much time

On the worst input, as 𝑛
gets bigger, the code

takes precisely this much

time (up to constants).

Best Case Under certain

circumstances, even as 𝑛
gets bigger, the code

takes at most this much

time.

No matter what, even

as 𝑛 gets bigger, the

code takes at least this

much time.

On the best input, even

as 𝑛 gets bigger, the

code takes precisely this

much time (up to

constants)

“worst input”: input that causes the code to run slowest.

CSE 373 19 SU - ROBBIE WEBER

Big-O Big-Omega Big-Theta

Worst Case No matter what, as 𝑛
gets bigger, the code

takes at most this much

time

Under certain

circumstances, as 𝑛 gets

bigger, the code takes

at least this much time

On the worst input, as 𝑛
gets bigger, the code

takes precisely this much

time (up to constants).

Best Case Under certain

circumstances, even as 𝑛
gets bigger, the code

takes at most this much

time.

No matter what, even

as 𝑛 gets bigger, the

code takes at least this

much time.

On the best input, even

as 𝑛 gets bigger, the

code takes precisely this

much time (up to

constants)

“worst input”: input that causes the code to run slowest.

CSE 373 19 SU - ROBBIE WEBER

Big-O Big-Omega Big-Theta

Worst Case No matter what, as 𝑛
gets bigger, the code

takes at most this much

time

Under certain

circumstances, as 𝑛 gets

bigger, the code takes

at least this much time

On the worst input, as 𝑛
gets bigger, the code

takes precisely this much

time (up to constants).

Best Case Under certain

circumstances, even as 𝑛
gets bigger, the code

takes at most this much

time.

No matter what, even

as 𝑛 gets bigger, the

code takes at least this

much time.

On the best input, even

as 𝑛 gets bigger, the

code takes precisely this

much time (up to

constants)

“worst input”: input that causes the code to run slowest.

CSE 373 19 SU - ROBBIE WEBER

Other cases

“Assume X won’t happen case”
-Assume our array won’t need to resize is the most common.

“Average case”
-Assume your input is random

-Need to specify what the possible inputs are and how likely they are.

-𝑓(𝑛) is now the average number of steps on a random input of size 𝑛.

“In-practice case”
-This isn’t a real term. (I just made it up)

- Make some reasonable assumptions about how the real-world is probably going to work

-We’ll tell you the assumptions, and won’t ask you to come up with these assumptions on
your own.

-Then do worst-case analysis under those assumptions.

All of these can be combined with any of 𝑂, Ω, and Θ!

CSE 373 19 SU - ROBBIE WEBER

How to do case analysis

1. Look at the code, understand how thing could change depending on the input.
- How can you exit loops early?

- Can you return (exit the method) early?

- Are some if/else branches much slower than others?

2. Figure out what inputs can cause you to hit the (best/worst) parts of the code.

3. Now do the analysis like normal!

CSE 373 19 SU - ROBBIE WEBER

/* given an array of integers, count the number of positive

integers that appear only once */

//There are more efficient versions of this.

int countUniquePositives(int[] arr){

int count = 0;

for(int i=0; i<arr.length; i++){

if(arr[i] <= 0)

break;

else{

boolean repeat = false;

for(int j=0; j < arr.length; j++){

if(i!=j && arr[i] == arr[j])

repeat = true;

}

if(!repeat)

count++;

}

}

return count;

}
CSE 373 19 SU - ROBBIE WEBER

Dictionaries and
best/worst case analysis

CSE 373 19 SU - ROBBIE WEBER

Dictionaries (aka Maps)

Every Programmer’s Best Friend

You’ll probably use one in almost every programming project.

-Because it’s hard to make a big project without needing one sooner or later.

CSE 373 19 SU - ROBBIE WEBER

Review: Maps

map: Holds a set of distinct keys and a collection of
values, where each key is associated with one value.
- a.k.a. "dictionary"

CSE 373 19 SU - ROBBIE WEBER

key value

“you" 22

key value

“in" 37

key value

“the" 56

key value

“at" 43

map.get("the") 56

Dictionary ADT

put(key, item) add item to

collection indexed with key

get(key) return item

associated with key

containsKey(key) return if key

already in use

remove(key) remove item

and associated key

size() return count of items

state

behavior

Set of items & keys

Count of items

supported operations:
- put(key, value): Adds a given item into

collection with associated key,

- if the map previously had a mapping
for the given key, old value is replaced

- get(key): Retrieves the value mapped to
the key

- containsKey(key): returns true if key is
already associated with value in map,
false otherwise

- remove(key): Removes the given key and
its mapped value

Implementing a Dictionary with an Array

ArrayDictionary<K, V>

put find key, overwrite value if there.

Otherwise create new pair, add to next

available spot, grow array if necessary

get scan all pairs looking for given

key, return associated item if found

containsKey scan all pairs, return if

key is found

remove scan all pairs, replace pair to

be removed with last pair in collection

size return count of items in

dictionary

state

behavior

Pair<K, V>[] data

Big O Analysis – Worst case

put()

get()

containsKey()

remove()

size() O(1) constant

O(N) linear

O(N) linear

O(N) linear

O(N) linear

0 1 2 3

put(‘a’, 1)

put(‘b’, 2)

put(‘c’, 3)

put(‘d’, 4)

remove(‘b’)

put(‘a’, 97)

(‘a’, 1) (‘b’, 2)

Dictionary ADT

put(key, item) add item to

collection indexed with key

get(key) return item

associated with key

containsKey(key) return if key

already in use

remove(key) remove item

and associated key

size() return count of items

state

behavior

Set of items & keys

Count of items

(‘c’, 3)97) (‘d’, 4)

CSE 373 19 SU - ROBBIE WEBER

2 Minutes

Big O Analysis – Best case

put()

get()

containsKey()

remove()

size() O(1) constant

O(1) constant

O(1) constant

O(1) constant

O(1) constant

Implementing a Dictionary with Nodes

LinkedDictionary<K, V>

put if key is unused, create new with

pair, add to front of list, else

replace with new value

get scan all pairs looking for given

key, return associated item if found

containsKey scan all pairs, return if

key is found

remove scan all pairs, skip pair to be

removed

size return count of items in

dictionary

state

behavior

front

size

Big O Analysis – Worst Case

put()

get()

containsKey()

remove()

size() O(1) constant

O(N) linear

O(N) linear

O(N) linear

O(N) linear

put(‘a’, 1)

put(‘b’, 2)

put(‘c’, 3)

put(‘d’, 4)

remove(‘b’)

put(‘a’, 97)

Dictionary ADT

put(key, item) add item to

collection indexed with key

get(key) return item

associated with key

containsKey(key) return if key

already in use

remove(key) remove item

and associated key

size() return count of items

state

behavior

Set of items & keys

Count of items

front

‘b’ 2‘c’ 3 ‘a’ 1‘d’ 4 97

CSE 373 19 SU - ROBBIE WEBER

2 Minutes

Big O Analysis – Best Case

put()

get()

containsKey()

remove()

size() O(1) constant

O(1) constant

O(1) constant

O(1) constant

O(1) constant

Dictionaries

Running times summary:

Worst case is slow for EVERY interesting operation.

For lists, we had usually one slow operation.

Dictionaries are really useful.

We’ll spend a week-and-a-half designing faster versions.

-But first, more big-O.

CSE 373 19 SU - ROBBIE WEBER

