
Lecture 4: Formal Big-O, 
Omega and Theta

CSE 373: Data Structures and 

Algorithms
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Adminstrivia

Project 0 due Wednesday 

Fill out the Project 1 partner form today!

Everyone needs to fill out the form

-If you have a partner, both of you need to fill out the form.

- If you don’t, you need to tell us if you want us to assign you one, or if you want to work 
alone.

Please fill out class survey
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Warm Up

Construct a mathematical function modeling the 
runtime for the following functions

public void mystery1(ArrayList<String> list) {

for (int i = 0; i < 3000; i++) {

for (int j = 0; j < 1000; j++) {

int index = (i + j) % list.size();

System.out.println(list.get(index));

}

for (int j = 0; j < list.size(); j++) {

System.out.println(“:)”);

}

}

}
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Possible answer

T(n) = 3000 (8002 + n) 

4 Minutes

pollEV.com/cse373su19

What is the big-O for the 

code model for mystery1?

Approach

-> start with basic operations, work inside out for control structures
- Each basic operation = +1

- Conditionals = test operations + appropriate branch

- Loop = iterations (loop body)

+1

+2

+4

n(1)

1000(8)

public void mystery2(ArrayList<String> list) {

for (int i = 0; i < list.size(); i++) {

for (int j = 0; j < list.size(); j++) {

System.out.println(list.get(0));

}

}

}

+4
n(4)

Possible answer

T(n) = 16n2

n(4n(4))

3000(1000(8) + n(1) + 2)



Function growth
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…but since both are linear 

eventually look similar at large 

input sizes

whereas h(n) has a distinctly 

different growth rate

The growth rate for f(n) and 

g(n) looks very different for 

small numbers of input

But for very small input values 

h(n) actually has a slower growth 

rate than either f(n) or g(n)

Imagine you have three possible algorithms to choose between. 

Each has already been reduced to its mathematical model
𝑓 𝑛 = 𝑛 𝑔 𝑛 = 4𝑛 ℎ 𝑛 = 𝑛2

𝑇 𝑛

𝑛

𝑇 𝑛

𝑛

𝑇 𝑛

𝑛



Review: Complexity Classes

complexity class – a category of algorithm efficiency based on the algorithm’s 
relationship to the input size N
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Class Big O If you double N… Example algorithm

constant O(1) unchanged Add to front of 

linked list

logarithmic O(log n) Increases slightly Binary search

linear O(n) doubles Sequential search

“n log n”* O(nlog n) Slightly more 

than doubles

Merge sort

quadratic O(n2) quadruples Nested loops 

traversing a 2D array

cubic O(n3) Multiplies by 8 Triple nested loop

polynomial O(nc)

exponential O(cn) Increases 

drastically

http://bigocheatsheet.com/

*There’s no generally agreed on term. “near[ly]-linear” is sometimes used.

http://bigocheatsheet.com/


Formal Definitions: Why?

You might already intuitively understand what big-O means.

At the very least, you know how to go from a code model to the big-O

Who needs a formal definition anyway?

We do!
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Think of your intuitive understanding as your 

internal sense of direction and map of the world.
And the formal definition as the google maps 

map of the world. 



Formal Definitions: Why?

If you’re walking around an area you’re familiar with, you just need an internal 
sense of direction – you don’t waste your phone battery for the “official” map.

If you’re analyzing simple code – similar to the kind you’ve analyzed before, 
you don’t bother with the formal definition, and just use your intuitive 
definition.

We’re going to be making more subtle big-O statements in this class.
-We need a mathematical definition to be sure we know exactly where we are.

We’re going to teach you how to use google maps, so if you get lost (come 
across a weird edge case) you know how to get your bearings.
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Definition: Big-O

We wanted to find an upper bound on our algorithm’s 
running time, but

- We don’t want to care about constant factors.

- We only care about what happens as 𝑛 gets large.

8

𝑓(𝑛) is 𝑂(𝑔 𝑛 ) if there exist positive 

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0, 

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

We also say that 𝑔 𝑛 “dominates” 𝑓(𝑛)
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Why 𝑛0?

Why 𝑐?



Applying Big O Definition
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𝑓 𝑛 = 10𝑛 + 15 𝑂 𝑛Show that is

𝑓(𝑛) is 𝑂(𝑔 𝑛 ) if there exist positive 

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0, 

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

Apply definition term by term

10𝑛 ≤ 𝑐・𝑛 when 𝑐 = 10 for all values of 𝑛

15 ≤ 𝑐・𝑛 when 𝑐 = 15 𝑓𝑜𝑟 𝑛 ≥ 1

Add up all your truths

10𝑛 + 15 ≤ 10𝑛 + 15𝑛 = 25𝑛 for 𝑛 ≥ 1

Select values for 𝑐 and 𝑛0 and prove they fit the definition

Take 𝒄 = 𝟐𝟓 and 𝒏𝟎 = 𝟏
10𝑛 ≤ 10𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑛
15 ≤ 15𝑛 𝑓𝑜𝑟 𝑛 ≥ 1
So 10𝑛 + 15 ≤ 25𝑛 for all 𝑛 ≥ 1, as required.

because a 𝑐 and 𝑛0 exist, 𝑓(𝑛) is 𝑂(𝑛)



Exercise: Proving Big O

Demonstrate that 5𝑛2 + 3𝑛 + 6 is dominated by 𝑛2

(i.e. that 5𝑛2 + 3𝑛 + 6 is 𝑂 𝑛2 , by finding a 𝑐 and 𝑛0
that satisfy the definition of domination

5n2 + 3n + 6 ≤ 5n2 + 3n2 + 6n2 when n ≥ 1

5n2 + 3n2 + 6n2 = 14n2

5n2 + 3n + 6 ≤ 14n2 for n ≥ 1

14n2 ≤ c*n2 for c = ? n >= ?

𝒄 = 14 & 𝒏𝟎 = 1

CSE 332 SU 18 - ROBBIE WEBER 10

𝑓(𝑛) is 𝑂(𝑔 𝑛 ) if there exist positive 

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0, 

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

3 Minutes



Writing Big-O proofs.

Steps to a big-O proof, to show 𝑓 𝑛 is 𝑂 𝑔 𝑛 .

1. Find a 𝑐, 𝑛0 that fit the definition for each of the terms of 𝑓.
- Each of these is a mini, easier big-O proof.

2. Add up all your 𝑐, take the max of your 𝑛0.

3. Add up all your inequalities to get the final inequality you want.

4. Clearly tell us what your 𝑐 and 𝑛0 are!

For any big-O proof, there are many 𝑐 and 𝑛0 that work.

You might be tempted to find the smallest possible 𝑐 and 𝑛0 that work.

You might be tempted to just choose 𝑐 = 1,000,000,000 and 𝑛0 = 73,000,000 for all the proofs.

Don’t do either of those things.

A proof is designed to convince your reader that something is true. They should be able to easily 
verify every statement you make. – We don’t care about the best 𝑐, just an easy-to-understand one.

We have to be able to see your logic at every step. 
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Edge Cases

True or False:  10𝑛2 + 15𝑛 is 𝑂(𝑛3)

It’s true – it fits the definition

CSE 332 SU 18 - ROBBIE WEBER 12

10𝑛2 ≤ 𝑐・𝑛3 𝑤ℎ𝑒𝑛 𝑐 = 10 𝑓𝑜𝑟 𝑛 ≥ 1

15𝑛 ≤ 𝑐・𝑛3 𝑤ℎ𝑒𝑛 𝑐 = 15 𝑓𝑜𝑟 𝑛 ≥ 1

10𝑛2 + 15𝑛 ≤ 10𝑛3 + 15𝑛3 ≤ 25𝑛3 𝑓𝑜𝑟 𝑛 ≥ 1

10𝑛2 + 15𝑛 is 𝑂(𝑛3) because 10𝑛2 + 15𝑛 ≤ 25𝑛3 𝑓𝑜𝑟 𝑛 ≥ 1

Big-O is just an upper bound. It doesn’t have to be a good upper bound

If we want the best upper bound, we’ll ask you for a simplified, tight big-O bound.

𝑂 𝑛2 is the tight bound for this example.

It is (almost always) technically correct to say your code runs in time 𝑂(𝑛!).

DO NOT TRY TO PULL THIS TRICK IN AN INTERVIEW (or exam).

1 Minute



Uncharted Waters

Find a model 𝑓 𝑛 for the running time of this code on input 𝑛. What’s the Big-O?
boolean isPrime(int n){

int toTest = 2;
while(toTest < n){

if(toTest % n == 0)
return true;

else
toTest++;

}
return false;

}

Operations per iteration: let’s just call it 1 to keep all the future slides simpler.

Number of iterations? 

- Smallest divisor of 𝑛
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Remember, 𝑓(𝑛) = the 

number of basic operations 

performed on the input 𝑛.



Prime Checking Runtime
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Is the running time of 

the code 𝑂 1 or 𝑂 𝑛 ?

More than half the time 

we need 3 or fewer 

iterations. Is it 𝑂(1)?

But there’s still always 

another number where 

the code takes 𝑛
iterations. So 𝑂 𝑛 ?

This is why we have definitions!

𝑓(𝑛)
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𝑓(𝑛) is 𝑂(𝑔 𝑛 ) if there exist positive 

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0, 

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

Is the running time 𝑂(𝑛)?
Can you find constants 𝑐 and 𝑛0?

How about 𝑐 = 1 and 𝑛0 = 5, 

𝑓 𝑛 =smallest divisor of 𝑛 ≤ 1 ⋅ 𝑛 for 𝑛 ≥ 5

Is the running time 𝑂(1)?
Can you find constants 𝑐 and 𝑛0?

No! Choose your value of 𝑐. I can find a prime 

number 𝑘 bigger than 𝑐.
And 𝑓 𝑘 = 𝑘 > 𝑐 ⋅ 1 so the definition isn’t met!

It’s 𝑂(𝑛) but not 𝑂 1

𝑓(𝑛)



Big-O isn’t everything

Our prime finding code is 𝑂(𝑛). But so is, for example, printing all the elements of a list.
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Your experience running these two pieces of code is going to be very different. 

It’s disappointing that the 𝑂() are the same – that’s not very precise. 

Could we have some way of pointing out the list code always takes AT LEAST 𝑛 operations?



Big-Ω [Omega]
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𝑓(𝑛) is Ω(𝑔 𝑛 ) if there exist positive 

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0, 

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓1 𝑛 is not Ω(𝑛) 𝑓2 𝑛 is Ω(𝑛)

For any 𝑐, 𝑛0 you suggest, I’ll take 𝑘 to be an even 

number such that 𝑘 > 1/𝑐. Then  

𝑓 𝑘 = 1 =
𝑐

𝑐
< 𝑐𝑘 = 𝑐 ⋅ 𝑔(𝑘)



O, and Omega, and Theta [oh my?]

Big-O is an upper bound 

-My code takes at most this long to run

Big-Omega is a lower bound

-My code takes at least this long to run

Big Theta is “equal to”
- My code takes “exactly”* this long to run

- *Except for constant factors and lower order terms
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𝑓(𝑛) is Ω(𝑔 𝑛 ) if there exist positive constants 

𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0, 

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) is Θ(𝑔 𝑛 ) if 

𝑓 𝑛 is 𝑂(𝑔 𝑛 ) and 𝑓 𝑛 is Ω(𝑔 𝑛 ).

Big-Theta

𝑓(𝑛) is 𝑂(𝑔 𝑛 ) if there exist positive 

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0, 

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O



Viewing O as a class

Sometimes you’ll see big-O defined as a family or set of functions.
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O(𝑔 𝑛 ) is the set of all functions 𝑓 𝑛 such that 

there exist positive constants 𝑐, 𝑛0 such that for 

all 𝑛 ≥ 𝑛0,  𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O (alternative definition)

For that reason, we sometimes write 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 instead of “𝑓 𝑛 is 𝑂(𝑔 𝑛 )”.

Other people write “𝑓 𝑛 = 𝑂 𝑔 𝑛 ” to mean the same thing.

The set of all functions that run in linear time (i.e. 𝑂(𝑛)) is a “complexity class.”

We never write 𝑂(5𝑛) or 𝑂 𝑛 + 1 instead of 𝑂(𝑛) – they’re the same thing! 

It’s like writing 
6

2
instead of 3. It just looks weird.



Examples

4n2 ∈ Ω(1)

true

4n2 ∈ Ω(n) 

true

4n2 ∈ Ω(n2) 

true

4n2 ∈ Ω(n3) 

false

4n2 ∈ Ω(n4) 

false
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4n2 ∈ O(1) 

false

4n2 ∈ O(n) 

false

4n2 ∈ O(n2) 

true

4n2 ∈ O(n3) 

true

4n2 ∈ O(n4) 

true

𝑓(𝑛) ∈ 𝑂(𝑔 𝑛 ) if there exist positive 

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0, 

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

𝑓(𝑛) ∈ Ω(𝑔 𝑛 ) if there exist positive 

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0, 

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) ∈ Θ(𝑔 𝑛 ) if 

𝑓 𝑛 is 𝑂(𝑔 𝑛 ) and 𝑓 𝑛 is Ω(𝑔 𝑛 ).

Big-Theta



Practice

5n + 3 is O(n)

n is O(5n + 3)

5n + 3 = O(n)

n2 ∈ O(1)

n2 ∈ O(n)

n2 ∈ O(n2)

n2 ∈ O(n3)

n2 ∈ O(n100)
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True

True

True

False

False

True

True

True

3 Minutes

𝑓(𝑛) ∈ 𝑂(𝑔 𝑛 ) if there exist positive 

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0, 

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

𝑓(𝑛) ∈ Ω(𝑔 𝑛 ) if there exist positive 

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0, 

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) ∈ Θ(𝑔 𝑛 ) if 

𝑓 𝑛 is 𝑂(𝑔 𝑛 ) and 𝑓 𝑛 is Ω(𝑔 𝑛 ).

Big-Theta



Simplified, tight big-O

Why not always just say 𝑓 𝑛 is 𝑂 𝑓 𝑛 .

It’s always true! (Take 𝑐 = 1, 𝑛0 = 1). 

The goal of big-O/Ω/Θ is to group similar functions together.

We want a simple description of 𝑓, if we wanted the full description of 𝑓 we 
wouldn’t use 𝑂
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Simplified, tight big-O

In this course, we’ll essentially use:
- Polynomials (𝑛𝑐 where 𝑐 is a constant: e.g. 𝑛, 𝑛3, 𝑛, 1)

- Logarithms log 𝑛

- Exponents (𝑐𝑛 where 𝑐 is a constant: e.g. 2𝑛, 3𝑛)

- Combinations of these (e.g. log log 𝑛 , 𝑛 log 𝑛 , log n
2
)

For this course: 

-A “tight big-O” is the slowest growing function among those listed.

-A “tight big-Ω” is the fastest growing function among those listed.

-(A Θ is always tight, because it’s an “equal to” statement)

-A “simplified” big-O (or Omega or Theta)

-Does not have any dominated terms.

-Does not have any constant factors – just the combinations of those functions.
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