AT PR

I—e Ct u re .3 : CSE 373 Data Structures and
COde AﬂalySIS Algorithms

CSE 373 SU 19 - ROBBIE WEBER

Administrivia

Three forms are going out later today:
Partner form for Project 1 (due Monday night)

Course background survey (help us optimize for your
background/goals)

Canvas quiz
Make sure you understand important details of the syllabus
Get extra credit!

Lecture 2 slides are updated on webpage.
Usually will do this silently, if bugs were pointed out during lecture.

CSE 373 SU 19 - ROBBIE WEBER 2

Testing Wrap Up

Computers don't make mistakes- people do!

‘I'm almost done, | just need to make sure it works”
— Naive 14Xers

Software Test: a separate piece of code that exercises the code you are assessing by
providing input to your code and finishes with an assertion of what the result should be.

Isolate - break your code into small modules

Build in increments - Make a plan from simplest to most complex cases

Test as you go - As your code grows, so should your tests

CSE 37319 SU - ROBBIE WEBER 3

Testing Strategies

You can't test everything
Break inputs into categories
What are the most important pieces of code?

Test behavior in combination
Call multiple methods one after the other
Call the same method multiple times

Trust no one!
How can the user mess up?

If you messed up, someone else might
Test the complex logic

CSE 37319 SU - ROBBIE WEBER

4

Algorithm Analysis

CSE 373 SU 19 - ROBBIE WEBER 5

Code Analysis

How do we compare two pieces of code?

Mathematically:

Time needed to run _ Tools we use can be applied to any
Memory used aspect of your code you can measure.

Number of network calls
Amount of data saved to disk

With Words:
Specialized vs generalized
Code reusability
Security

CSE 373 SU 19 - ROBBIE WEBER 6

Comparing Algorithms with Mathematical
Models

Consider overall trends as input/data set gets bigger

Computers are fast — anything you do on your 5 item dataset is going to finish in the blink of an eye.
Large inputs differentiate.

Identify trends without investing in testing
Estimate how big of a dataset you can handle

asymptotic analysis — the process of mathematically representing runtime of an algorithm as
a function of the number/size of inputs as the input grows (arbitrarily large)

CSE 373 SU 19 - ROBBIE WEBER 7

‘ Code Modeling

CSE 373 SU 19 - ROBBIE WEBER 8

Disclaimer

This topic has lots of details/subtle relationships between concepts.

I'm going to try to introduce things one at a time (all at once can be overwhelming).

“We'll see that later” might be the answer to a lot of questions.

CSE 373 SU 19 - ROBBIE WEBER 9

Code Modeling

code modeling — the process of mathematically representing how many operations a
piece of code will run in relation to the number of inputs n

What counts as an “operation”?

Adding ints or doubles

Variable assignment

Variable update

Return statement

Accessing array index or object field

Count runtime of function body
Remember that new calls a function!

Time of test + appropriate branch
We'll talk about which branch to analyze when we get to cases.

Sum time of each statement

Number of iterations of loop body x runtime of
loop body

CSE 373 SU 19 - ROBBIE WEBER 10

Modeling Case Study

Goal: return "true’ if a sorted array of ints contains duplicates

compare each pair of elements

public boolean hasDuplicatel (int[] array) {
boolean found = false;
int failedChecks = 0;
for (int 1 = 0; 1 < array.length; i++) {
for (int j = 0; Jj < array.length; j++) {
if (i '= j && arrayl[i] == arrayl[j])
found = true;
else
failedChecks++

}
}

return found;

}

Solution 2: compare each consecutive pair of elements

public boolean hasDuplicate2 (int[] array) {
boolean found = false;
int failedChecks = 0;
for (int 1 = 0; 1 < array.length - 1; i++) {
if (array[i] == array[i + 1])
found = true;
else
failedChecks++;

}

return found;

CSE 373 SU 19 - ROBBIE WEBER 1

Modeling Case Study: Solution 2

Goal: produce mathematical function representing runtime f(n) where n is the size of the array

Solution 2: compare each consecutive pair of elements

public boolean hasDuplicateZ2(int[] array) {
boolean found = false;
int failedChecks = 0;
fory+{int 1 = 0; 1 < array.length - 1; 1++) {

1f (arrayl[i] == arrayl[i + 1])
found = true;

else
failedChecks++;

}

return found;

}

Approach
fm)=7n—-1) +4
Each basic operation = +1

Conditionals = test operations+ appropriate branch (today
branches equivalent)

Loop = #iterations * (operations in loop body)

linear -> 0(n)

IEAAICNED
UDDIC VVEDER

Finding a Big-O

We have an expression for f(n). fmM)=7n—1)+ 4
—
How do we get the 0()?
1. Make f(n) "look nice” fmM)=7n-1)+4="n—-7+4=7n-3

/

2. Find the “dominating term” and delete all others. f(n)=7n—3~7n

The "dominating” term is the one that is largest as n gets bigger. =
In this class, often the largest power of n.

3. Remove any constant factors. fn) ~7n~n

4. Write the final big-O f(n)is 0(n)

CSE 373 SU 19 - ROBBIE WEBER 13

Wait, what?

Why did we just throw out all of that information?

Big-O is the “significant digits” of computer science.

We care about what happens when n gets bigger
All code is “fast enough” for small n in practice

For large enough n the dominant term decides how big the function is.
— \

Why get rid of constants — we were counting "basic operations”

There is not a strong correlation between the number of basic operations and the time
code actually takes to run.

CSE 373 SU 19 - ROBBIE WEBER 14

Why aren't they significant?

public static void methodl (int[] input) public static void methodz (int[] input)
{ {
int n = 1nput.length;
input[n-1] = 1input[3] + inputl[4];
input [0]+= input[1l];

int five = 5;
input[five] =
input[five] -—;

input[five] + 1;

}

}

public static void method1(int[]); Code: public static void method2(int[]); Code:
0: aload_0 10: aload_0 20: iconst_1 0: iconst_5 10: aload_0
1: arraylength 11: !const_4 21: !aload 1: istore_1 11: iload 1
2:istore_1 12: !aload 22: !add 2: aload 0 12: dup?2
3:aload_0 13: iadd 23: lastore 3:iload_1 13: iaload
4:iload_1 14: iastore 24: return 4: aload 0 14: iconst_1
Sjconﬂ;l 151§03d_0 5:iload_1 15: isub

6: isub 16:iconst_0 6: iaload 16: iastore
7: aload_0 17: plup2 7:iconst_1 17: return
8:iconst_3 18: iaload 8: iadd

9: iaload 19: aload_0 9: jastore

CSE 373 SU 19 - ROBBIE WEBER 15

Why aren't they significant?

It goes deeper.

The Java bytecode is converted (compiled) into your own machine’s assembly code
Might change the number of lines again.

The number of lines still isn't a perfect reflection of time taken by your laptop.

The amount of time it takes to look up a value in memory is wildly variable

Recently used values are probably “cached” and will have a quick lookup

If a value hasn't been used in a long time, might have to wait for main memory, which takes thousands of
times as long.

Modern computers do lots of crazy things to speed up code.
“pipelining” (execute parts of multiple instructions simultaneously)
“branch prediction” (quess whether you're about to go down the if or else branch before it actually gets there)

CSE 373 SU 19 - ROBBIE WEBER 16

Code Modelling

We can't accurately model the constant factors just by staring at the code.

And the lower-order terms matter even less than the constant factors.

So we just ignore them for the big-O.

If we ask for a model, we won't care about whether you count 4 operations per loop or 5
(or 10 or 1 or 28).

We want to be able to see your numbers weren't guesses and that you get the right big-O.

This does not mean you shouldn't care about constant factors ever — they are important in
real code!

Our theoretical tools aren't precise enough to analyze them well.

CSE 373 SU 19 - ROBBIE WEBER 17

Modeling Case Study:

compare each consecutive pair of elements
public boolean hasDuplicatel (1nt[] array) {

boolean found = false;
int failedChecks = 0;
for (int 1 = 0; 1 < array.length; 1++) {
for (int 7 = 0; jJ < array.length; j++) {
if (1 != 7 && array[i] == array[]])
found = true;
else
failedChecks++

}
}

return found;
} Approach
fn) =n(Bn+1)+4 Each basic operation = +1
quadratic -> O(n?) Conditionals = test operations+ appropriate branch (today
branches equivalent)
Loop = #iterations * (operations in loop body)

IEAAICNED
UDDIC VVEDER

Your turn!

Write the specific mathematical code model for the following code and
indicate the big-O runtime in terms of k.

public void foobar (int k) { L)C
while (3 < k) 5 Ef(k) Sk(k +2)
for (int 1 = 0; i < k; 1i++) { 5

System.out.println (“Hello world”); quadratic > 0(k?)

} Approach

Each basic operation = +1

Conditionals = test operations+ appropriate branch (today
branches equivalent)

Loop = #iterations * (operations in loop body)

CE 272 C11an DADQIC \A/ENEN 10
COC 575 55U 1T - RUDDIC VVEDCER g

More Practice

Let myLL be a linked list (like we saw in lecture 1) with n nodes.

Suppose we're a client class. Let's try to print every element of the list.
Assume get (i) takes i steps

for(int 1=0; i<myLL.size (), 1i++) {
System.out.println (myLL.get (1)) ;

The number of operations changes each time through the loop.

Summations to the rescue!
*)
nzli_”(n—l)/% Q(ﬂ
, 2
=0

Summations review and a bunch of identities:

https: / /courses.cs.washington.edu/courses /cse373/19su/resources/
o ’ ’ ’ ’ CSE 373 SU™9 - ROBBIE WEBER 20

https://courses.cs.washington.edu/courses/cse373/19su/resources/

‘ Iterators

CSE 373 SU 19 - ROBBIE WEBER 21

Traversing Data

We could get through the data much more efficiently in the Linked List class itself.
Node curr = this.front;

while (curr!=null) {
System.out.println (curr.data);
curr = curr.next;

}

What if the client wants to do something other than just print?

We should provide giving each element in order as a service to client classes.

for (T item : list) { < Iterator!

System.out.println (item);

CSE 373 SU 19 - ROBBIE WEBER 22

lterators

iterator: a Java interface that dictates how a collection of data should be traversed. Can only
move in the forward direction and in a single pass.

behavior hasNext() — returns true if the iteration has more elements yet to be
hasNext() — true if elements examined
remain

next() - retumns next element | NEXE() — returns the next element in the iteration and moves the
iterator forward to next item

ArrayList<Integer> list = new Arraylist<Integer>(); ArraylList<Integer> list = new ArrayList<Integer>();
//£ill up list

//£ill up list

Iterator itr = list.iterator();
while (itr.hasNext()) {
int item = itr.next(); }

for (int i : list) {
int item = 1i;

}

CSE 373 SU 19 - ROBBE WEBER

Implementing an lterator

Usually: you'll have a private class for the iterator object.
That iterator class will have a class variable to remember where you are.
hasNext () —check if there's something left by examining the class variable.

next () —return the current thing and update the class variable.

You have a choice:
Variable might point to the thing you just processed
Or the next thing that would be returned.

Both will work, one might be easier to think about/code up in some instances than others.

Punchline: Iterators make your client's code more efficient (which is what they care about)

CSE 373 SU 19 - ROBRAE WEBER

