
Lecture 3:
Code Analysis

CSE 373 Data Structures and

Algorithms

CSE 373 SU 19 - ROBBIE WEBER 1

Administrivia

Three forms are going out later today:

-Partner form for Project 1 (due Monday night)

-Course background survey (help us optimize for your
background/goals)

-Canvas quiz

-Make sure you understand important details of the syllabus

-Get extra credit!

Lecture 2 slides are updated on webpage.
-Usually will do this silently, if bugs were pointed out during lecture.

CSE 373 SU 19 - ROBBIE WEBER 2

Testing Wrap Up

Computers don’t make mistakes- people do!

“I’m almost done, I just need to make sure it works”
– Naive 14Xers

Software Test: a separate piece of code that exercises the code you are assessing by
providing input to your code and finishes with an assertion of what the result should be.

1. Isolate - break your code into small modules

2. Build in increments - Make a plan from simplest to most complex cases

3. Test as you go - As your code grows, so should your tests

CSE 373 19 SU - ROBBIE WEBER 3

Testing Strategies

You can’t test everything
- Break inputs into categories

- What are the most important pieces of code?

Test behavior in combination
- Call multiple methods one after the other

- Call the same method multiple times

Trust no one!
- How can the user mess up?

If you messed up, someone else might
- Test the complex logic

4CSE 373 19 SU - ROBBIE WEBER

Algorithm Analysis

CSE 373 SU 19 - ROBBIE WEBER 5

Code Analysis

How do we compare two pieces of code?

Mathematically:
-Time needed to run

-Memory used

-Number of network calls

-Amount of data saved to disk

With Words:
-Specialized vs generalized

-Code reusability

-Security

CSE 373 SU 19 - ROBBIE WEBER 6

Tools we use can be applied to any

aspect of your code you can measure.

Comparing Algorithms with Mathematical
Models

Consider overall trends as input/data set gets bigger
- Computers are fast – anything you do on your 5 item dataset is going to finish in the blink of an eye.

- Large inputs differentiate.

Identify trends without investing in testing
- Estimate how big of a dataset you can handle

asymptotic analysis – the process of mathematically representing runtime of an algorithm as
a function of the number/size of inputs as the input grows (arbitrarily large)

CSE 373 SU 19 - ROBBIE WEBER 7

Code Modeling

CSE 373 SU 19 - ROBBIE WEBER 8

Disclaimer

This topic has lots of details/subtle relationships between concepts.

I’m going to try to introduce things one at a time (all at once can be overwhelming).

“We’ll see that later” might be the answer to a lot of questions.

CSE 373 SU 19 - ROBBIE WEBER 9

Code Modeling

code modeling – the process of mathematically representing how many operations a
piece of code will run in relation to the number of inputs 𝑛

CSE 373 SU 19 - ROBBIE WEBER 10

What counts as an “operation”?

Basic operations
- Adding ints or doubles

- Variable assignment

- Variable update

- Return statement

- Accessing array index or object field

Consecutive statements
- Sum time of each statement

Function calls
- Count runtime of function body

- Remember that new calls a function!

Conditionals
- Time of test + appropriate branch

- We’ll talk about which branch to analyze when we get to cases.

Loops
- Number of iterations of loop body x runtime of

loop body

Assume all basic operations run in equivalent time

Modeling Case Study

Goal: return ‘true’ if a sorted array of ints contains duplicates

Solution 1: compare each pair of elements
public boolean hasDuplicate1(int[] array) {

boolean found = false;
int failedChecks = 0;
for (int i = 0; i < array.length; i++) {

for (int j = 0; j < array.length; j++) {
if (i != j && array[i] == array[j])

found = true;
else

failedChecks++
}

}
return found;

}

Solution 2: compare each consecutive pair of elements
public boolean hasDuplicate2(int[] array) {

boolean found = false;
int failedChecks = 0;
for (int i = 0; i < array.length - 1; i++) {

if (array[i] == array[i + 1])
found = true;

else
failedChecks++;

}
return found;

}

CSE 373 SU 19 - ROBBIE WEBER 11

Modeling Case Study: Solution 2

Goal: produce mathematical function representing runtime 𝑓(𝑛) where 𝑛 is the size of the array

Solution 2: compare each consecutive pair of elements
public boolean hasDuplicate2(int[] array) {

boolean found = false;
int failedChecks = 0;
for (int i = 0; i < array.length - 1; i++) {

if (array[i] == array[i + 1])
found = true;

else
failedChecks++;

}
return found;

}

linear -> 𝑂(𝑛)

CSE 373 SU 19 - ROBBIE WEBER 12

+1

+1

+2

loop = (n – 1)(body)

If statement

4+1=5

𝑓 𝑛 = 7 𝑛 − 1 + 4
Approach

-> start with basic operations, work inside out for control structures
- Each basic operation = +1

- Conditionals = test operations+ appropriate branch (today

branches equivalent)

- Loop = #iterations * (operations in loop body)

+1 either branch

+1

+1
+1

+1
Loop body

5 (if) + 2 (loop checks) = 7

Finding a Big-O

We have an expression for 𝑓(𝑛).

How do we get the 𝑂()?

1. Make 𝑓(𝑛) “look nice”

2. Find the “dominating term” and delete all others.
- The “dominating” term is the one that is largest as 𝑛 gets bigger.

In this class, often the largest power of 𝑛.

3. Remove any constant factors.

4. Write the final big-O

𝑓 𝑛 = 7 𝑛 − 1 + 4

𝑓 𝑛 = 7 𝑛 − 1 + 4 = 7𝑛 − 7 + 4 = 7𝑛 − 3

𝑓 𝑛 = 7𝑛 − 3 ≈ 7𝑛

𝑓 𝑛 ≈ 7𝑛 ≈ 𝑛

𝑓 𝑛 is 𝑂(𝑛)

CSE 373 SU 19 - ROBBIE WEBER 13

Wait, what?

Why did we just throw out all of that information?

Big-O is the “significant digits” of computer science.

We care about what happens when 𝑛 gets bigger
- All code is “fast enough” for small 𝑛 in practice

For large enough 𝑛 the dominant term decides how big the function is.

Why get rid of constants – we were counting “basic operations”

There is not a strong correlation between the number of basic operations and the time
code actually takes to run.

CSE 373 SU 19 - ROBBIE WEBER 14

Why aren’t they significant?

public static void method1(int[] input)

{

int n = input.length;

input[n-1] = input[3] + input[4];

input[0]+= input[1];

}

public static void method2(int[] input)

{

int five = 5;

input[five] = input[five] + 1;

input[five]--;

}

public static void method1(int[]); Code:
0: aload_0
1: arraylength
2: istore_1
3: aload_0
4: iload_1
5: iconst_1
6: isub
7: aload_0
8: iconst_3
9: iaload

10: aload_0
11: iconst_4
12: iaload
13: iadd
14: iastore
15: aload_0
16: iconst_0
17: dup2
18: iaload
19: aload_0

20: iconst_1
21: iaload
22: iadd
23: iastore
24: return

0: iconst_5
1: istore_1
2: aload_0
3: iload_1
4: aload_0
5: iload_1
6: iaload
7: iconst_1
8: iadd
9: iastore

10: aload_0
11: iload_1
12: dup2
13: iaload
14: iconst_1
15: isub
16: iastore
17: return

public static void method2(int[]); Code:

CSE 373 SU 19 - ROBBIE WEBER 15

Why aren’t they significant?

It goes deeper.

The Java bytecode is converted (compiled) into your own machine’s assembly code
- Might change the number of lines again.

The number of lines still isn’t a perfect reflection of time taken by your laptop.

The amount of time it takes to look up a value in memory is wildly variable

Recently used values are probably “cached” and will have a quick lookup

If a value hasn’t been used in a long time, might have to wait for main memory, which takes thousands of
times as long.

Modern computers do lots of crazy things to speed up code.
- “pipelining” (execute parts of multiple instructions simultaneously)

- “branch prediction” (guess whether you’re about to go down the if or else branch before it actually gets there)

CSE 373 SU 19 - ROBBIE WEBER 16

Code Modelling

We can’t accurately model the constant factors just by staring at the code.

And the lower-order terms matter even less than the constant factors.

So we just ignore them for the big-O.

If we ask for a model, we won’t care about whether you count 4 operations per loop or 5
(or 10 or 1 or 28).

We want to be able to see your numbers weren’t guesses and that you get the right big-O.

This does not mean you shouldn’t care about constant factors ever – they are important in
real code!
- Our theoretical tools aren’t precise enough to analyze them well.

CSE 373 SU 19 - ROBBIE WEBER 17

Modeling Case Study: Solution 1

Solution 1: compare each consecutive pair of elements
public boolean hasDuplicate1(int[] array) {

boolean found = false;
int failedChecks = 0;
for (int i = 0; i < array.length; i++) {

for (int j = 0; j < array.length; j++) {
if (i != j && array[i] == array[j])

found = true;
else

failedChecks++
}

}
return found;

}

quadratic -> O(n2)

CSE 373 SU 19 - ROBBIE WEBER 18

+1

+1

+5
x n

6

x n

8n

n(8n+1)

𝑓 𝑛 = 𝑛 8𝑛 + 1 + 4

Approach

-> start with basic operations, work inside out for control structures
- Each basic operation = +1

- Conditionals = test operations+ appropriate branch (today

branches equivalent)

- Loop = #iterations * (operations in loop body)

Your turn!

Write the specific mathematical code model for the following code and
indicate the big-O runtime in terms of 𝑘.

public void foobar (int k) {

int j = 0;

while (j < k) {

for (int i = 0; i < k; i++) {

System.out.println(“Hello world”);

}

j = j + 5;

}

}

CSE 373 SU 19 - ROBBIE WEBER 19

+1

+2

+1

+k(body)

+k/5 (body)
𝑓 𝑘 =

𝑘 𝑘 + 2

5

quadratic -> 𝑂 𝑘2

5 Minutes

Approach

-> start with basic operations, work inside out for control structures
- Each basic operation = +1

- Conditionals = test operations+ appropriate branch (today

branches equivalent)

- Loop = #iterations * (operations in loop body)

More Practice

Let myLL be a linked list (like we saw in lecture 1) with 𝑛 nodes.

Suppose we’re a client class. Let’s try to print every element of the list.

Assume get(i)takes 𝑖 steps

for(int i=0; i<myLL.size(); i++){

System.out.println(myLL.get(i));

}

The number of operations changes each time through the loop.

Summations to the rescue!

𝑖=0

𝑛−1

𝑖 =
𝑛 𝑛 − 1

2

Summations review and a bunch of identities:

https://courses.cs.washington.edu/courses/cse373/19su/resources/
CSE 373 SU 19 - ROBBIE WEBER 20

https://courses.cs.washington.edu/courses/cse373/19su/resources/

Iterators

CSE 373 SU 19 - ROBBIE WEBER 21

Traversing Data

We could get through the data much more efficiently in the Linked List class itself.

Node curr = this.front;

while(curr!=null){

System.out.println(curr.data);

curr = curr.next;

}

What if the client wants to do something other than just print?

We should provide giving each element in order as a service to client classes.

for (T item : list) {

System.out.println(item);

}

CSE 373 SU 19 - ROBBIE WEBER 22

Iterator!

Review: Iterators

iterator: a Java interface that dictates how a collection of data should be traversed. Can only
move in the forward direction and in a single pass.

23

Iterator Interface

hasNext() – true if elements

remain

next() – returns next element

behavior

supported operations:

hasNext() – returns true if the iteration has more elements yet to be
examined

next() – returns the next element in the iteration and moves the
iterator forward to next item

ArrayList<Integer> list = new ArrayList<Integer>();

//fill up list

Iterator itr = list.iterator();

while (itr.hasNext()) {

int item = itr.next();

}

ArrayList<Integer> list = new ArrayList<Integer>();

//fill up list

for (int i : list) {

int item = i;

}

CSE 373 SU 19 - ROBBIE WEBER

Implementing an Iterator

24CSE 373 SU 19 - ROBBIE WEBER

Usually: you’ll have a private class for the iterator object.

That iterator class will have a class variable to remember where you are.

hasNext() – check if there’s something left by examining the class variable.

next() – return the current thing and update the class variable.

You have a choice:
- Variable might point to the thing you just processed

- Or the next thing that would be returned.

Both will work, one might be easier to think about/code up in some instances than others.

Punchline: Iterators make your client’s code more efficient (which is what they care about)

