
Lecture 2: Stacks and 
Queues

CSE 373: Data Structures and 

Algorithms

CSE 373 19 SU -- ROBBIE WEBER 1



Administrivia
Course Stuff
- Office hours are on class webpage: cs.washington.edu/373 

- Piazza: https://piazza.com/class/jwcann1clfq7bn

- Add code is on Canvas (or ask a staff member)

Project 0 Live!
- Individual assignment

- 14x content review

- GitLab/IntelliJ setup

- You should have already gotten an automatic email with a link to your gitlab repo.

- Check your spam folder

Project 1 out next week, partner project
- find your own partner

- Lecture, section, piazza, office hours

Last 5-10 minutes of section will be help with gitlab/intelliJ setup (if you’re stuck bring your 
laptop and get some help.)

CSE 373 19 SU -- ROBBIE WEBER 2

https://piazza.com/class/jwcann1clfq7bn


Warm Up

1. Introduce yourself to 
your neighbors 

2. Discuss your answers

3. Log onto Poll 
Everywhere

1. Go to 

PollEv.com/cse373su19

2. OR Text CSE373Su19 to 
22333 to join session, 
text “1” “2” or “3” to select 
your answer

4. Get extra credit!

CSE 373 19 SU -- ROBBIE WEBER 3

ArrayList<E>

get return data[index]

set data[index] = value

append data[size] = 

value, if out of space 

grow data

insert shift values to 

make hole at index, 

data[index] = value, if 

out of space grow data

delete shift following 

values forward

size return size 

state

behavior

data[]

size

ArrayList

uses an Array as underlying storage

0 1 2 3 4

88.6 26.1 94.4 0 0

list free space

LinkedList<E>

get loop until index, 

return node’s value

set loop until index, 

update node’s value

append create new 

node, update next of 

last node

insert create new 

node, loop until 

index, update next 

fields

delete loop until 

index, skip node

size return size 

state

behavior

Node front

size

LinkedList

uses nodes as underlying storage

88.6 26.1 94.4

Q: Would you use a LinkedList or ArrayList

implementation for each of these scenarios?

Instructions

Take 3 Minutes

Situation #1: Write a data 

structure that implements the List 

ADT that will be used to store a 

list of songs in a playlist. 

Situation #2: Write a data 

structure that implements the List 

ADT that will be used to store the 

history of a bank customer’s 

transactions.

Situation #3: Write a data 

structure that implements the List 

ADT that will be used to store the 

order of students waiting to speak 

to a TA at a tutoring center

https://pollev.com/cse373su19


Design Decisions
Situation #1: Write a data structure that implements the List ADT that will be used to store a 
list of songs in a playlist. 

ArrayList – I want to be able to shuffle play on the playlist

Situation #2: Write a data structure that implements the List ADT that will be used to store 
the history of a bank customer’s transactions.

ArrayList – optimize for addition to back and accessing of elements 

Situation #3: Write a data structure that implements the List ADT that will be used to store 
the order of students waiting to speak to a TA at a tutoring center

LinkedList - optimize for removal from front

ArrayList – optimize for addition to back

4CSE 373 19 SU -- ROBBIE WEBER



List ADT tradeoffs 

Last time: we used “slow” and “fast” to describe running times. Let’s be a little more precise.

Recall these basic Big-O ideas from 14X: Suppose our list has N elements
- If a method takes a constant number of steps (like 23 or 5) its running time is O(1)

- If a method takes a linear number of steps (like 4N+3) its running time is O(N)

For ArrayLists and LinkedLists, what is the O() for each of these operations?
- Time needed to access 𝑁th element:

- Time needed to insert at end (the array is full!)

What are the memory tradeoffs for our two implementations?
- Amount of space used overall

- Amount of space used per element

5

0 1 2 3 4

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘h’ ‘o’ /‘e’ ‘l’ ‘l’

ArrayList<Character> myArr

front

LinkedList<Character> myLl

CSE 373 19 SU -- ROBBIE WEBER



List ADT tradeoffs 

Time needed to access 𝑁th element:
- ArrayList: O(1) constant time

- LinkedList: O(N) linear time

Time needed to insert at 𝑁th element (the array is full!)
- ArrayList: O(N) linear time

- LinkedList: O(N) linear time

Amount of space used overall
- ArrayList: sometimes wasted space

- LinkedList: compact

Amount of space used per element
- ArrayList: minimal

- LinkedList: tiny extra

6

0 1 2 3 4

‘h’ ‘e’ ‘l’ ‘l’ ‘o’

‘h’ ‘o’ /‘e’ ‘l’ ‘l’front

CSE 373 19 SU -- ROBBIE WEBER

ArrayList<Character> myArr

LinkedList<Character> myLl



Goals for Today

Review Stacks, Queues 
- What are the ADTs

- How can you implement both of them with arrays and with nodes?

Basics of Testing your code.

(maybe) Review Dictionaries.
- What is the ADT

- Can we implement well with arrays and nodes?

CSE 373 19 SU - ROBBIE WEBER 7



Review: What is a Stack?

stack: A collection based on the principle of adding 
elements and retrieving them in the opposite order.
- Last-In, First-Out ("LIFO")

- Elements are stored in order of insertion.

- We do not think of them as having indexes.

- Client can only add/remove/examine 
the last element added (the "top").

CSE 143 SP 17 – ZORAH FUNG 8

top 3

2

bottom 1

pop, peekpush

Stack ADT

push(item) add item to top

pop() return and remove 

item at top

peek() look at item at top

size() count of items

isEmpty() count of items is 0?

state

behavior

Set of ordered items

Number of items

supported operations:
- push(item): Add an element to the top of stack

- pop(): Remove the top element and returns it

- peek(): Examine the top element without removing it

- size(): how many items are in the stack?

- isEmpty(): false if there are 1 or more items in stack, true otherwise



Implementing a Stack with an Array

0 1 2 3

9

push(3)

push(4)

pop()

push(5)

3 45

numItems = 012

ArrayStack<E>

push data[numItems] = value, if 

out of room grow data, numItems++

pop return data[numItems - 1], 

numItems-=1

peek return data[numItems - 1]

size return numItems

isEmpty return numItems == 0

state

behavior

data[]

size

Big O Analysis

pop()

peek()

size()

isEmpty()

push() Don’t resize: O(1) Constant

Do resize: O(N) linear

O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

CSE 373 19 SU - ROBBIE WEBER

Stack ADT

push(item) add item to top

pop() return and remove 

item at top

peek() look at item at top

size() count of items

isEmpty() count of items is 0?

state

behavior

Set of ordered items

Number of items



Implementing a Stack with Nodes

CSE 373 19 SU - ROBBIE WEBER 10

push(3)

push(4)

pop()
numItems = 012

LinkedStack<E>

push add new node at top 

numItems++

pop return and remove node at 

top, numItems-=1

peek return node at top

size return numItems

isEmpty return numItems == 0

state

behavior

Node top

size

Big O Analysis

pop()

peek()

size()

isEmpty()

push() O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

Stack ADT

push(item) add item to top

pop() return and remove 

item at top

peek() look at item at top

size() count of items

isEmpty() count of items is 0?

state

behavior

Set of ordered items

Number of items

4

3front



Review: What is a Queue?

queue: Retrieves elements in the order they were 
added.
- First-In, First-Out ("FIFO")

- Elements are stored in order of insertion but don't have indexes.

- Client can only add to the end of the queue, and can only 
examine/remove the front of the queue.

CSE 373 19 SU - ROBBIE WEBER 11

front back

1 2 3
addremove, peek

Queue ADT

add(item) add item to back 

remove() remove and return 

item at front

peek() return item at front

size() count of items

isEmpty() count of items is 0?

state

behavior

Set of ordered items

Number of items

supported operations:
- add(item): aka “enqueue” add an element to the back.

- remove(): aka “dequeue” Remove the front element and return.

- peek(): Examine the front element without removing it.

- size(): how many items are stored in the queue?

- isEmpty(): if 1 or more items in the queue returns true, false otherwise



Implementing a Queue with an Array

0 1 2 3 4

12

add(5)

add(8)

add(9)

remove()

numItems = 0

5 8 9

123

ArrayQueue<E>

add – data[back] = value, if out of 

room grow data, back++, numItems++

remove – return data[front], 

numItems-=1, front++

peek – return data[front]

size – return numItems

isEmpty – return numItems == 0

state

behavior

data[]

numItems

front index

back index

Queue ADT

add(item) add item to back 

remove() remove and return 

item at front

peek() return item at front

size() count of items

isEmpty() count of items is 0?

state

behavior

Set of ordered items

Number of items

front = 0

back = 0

Big O Analysis

remove()

peek()

size()

isEmpty()

add() Don’t resize: O(1) Constant

Do resize: O(N) linear

O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

12

1

CSE 373 19 SU - ROBBIE WEBER



Implementing a Queue with an Array

CSE 373 19 SU - ROBBIE WEBER 13

0 1 2 3 4

numItems = 3

front back

5 9 2 74

add(7)

add(4)

add(1)

45

0 1 2 3 4 5 6 7 8 9

5 9 2 7 4

front back

1

> Wrapping Around



Implementing a Queue with Nodes

14

add(5)

add(8)

remove()

LinkedQueue<E>

add – add node to back, numItems++

remove – return and remove node at 

front, numItems--

peek – return node at front

size – return numItems

isEmpty – return numItems == 0

state

behavior

Node front

Node back

numItems

Queue ADT

add(item) add item to back 

remove() remove and return 

item at front

peek() return item at front

size() count of items

isEmpty() count of items is 0?

state

behavior

Set of ordered items

Number of items

Big O Analysis

remove()

peek()

size()

isEmpty()

add() O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

CSE 373 19 SU - ROBBIE WEBER

numItems = 012

85front

back



Multiple Levels of Design Decisions

Implementation Details
- Do we overwrite old values with null or do we leave the garbage value?

- Do we validate input and throw exceptions or just wait for the code to fail?

Data structure choice

- Do we use a LinkedList or an ArrayList?

- Do we use a Node-based queue implementation or an array-based implementation?

Choice of ADT
- Which of the ADTs that we’ve seen is the best fit?

(We’ll see other kinds of design decisions later in the quarter).

CSE 373 19 SU - ROBBIE WEBER 15



Design Decisions

Discuss with your neighbors: For each scenario select the appropriate ADT and 
implementation to best optimize for the given scenario.

Situation #1: You are writing a program to manage a todo list with a specific approach to 
tasks. This program will order tasks for so that the most recent task is addressed first. You 
don’t want to risk a long delay between submission of an item and its appearance.

Stack – First in Last out

Nodes – make addition and removal of tasks very easy

Situation #2: You are writing a program to schedule jobs sent to a laser printer. The laser 
printer should process these jobs in the order in which the requests were received. The 
printer has very limited memory.

Queue – First in First out 

Array – want to save the extra pointers to fit in our limited space

16CSE 373 19 SU - ROBBIE WEBER

Take 3 Minutes



Testing Your Code

17CSE 373 19 SU - ROBBIE WEBER



Testing: Why are we doing this?

The ability to test your own code is integral to an understanding of data structures.
- Differentiating between ADT requirements and design decisions you made.

- Coming up with test cases is one of the best ways to understand data structures more deeply

- What cases will cause certain implementations to slow down?

- How long do I expect certain operations to take?

- What edge cases are there in the definition?

- Where else might I find bugs?

In the real world, coding projects don’t come with their own tests.
- You have to write your own.

You might be frustrated with us at some point for not giving you test cases.
- I understand. I was frustrated with my data structures professor when she didn’t give us tests.

- Learning to test your own code is integral to maturing as a computer scientist.

- We’re always tweaking things to make this as painless as we can.

CSE 373 19 SU - ROBBIE WEBER 18



Testing

Today: Strategies for generating tests. Ways to think about testing.

Thursday: Activity to practice our particular testing framework 

CSE 373 19 SU - ROBBIE WEBER 19



Testing

Computers don’t make mistakes- people do!

“I’m almost done, I just need to make sure it works” 
– Naive 14Xers

Software Test: a separate piece of code that exercises the code you are assessing by 
providing input to your code and finishes with an assertion of what the result should be. 

1. Isolate - break your code into small modules

2. Build in increments - Make a plan from simplest to most complex cases

3. Test as you go - As your code grows, so should your tests

CSE 373 19 SU - ROBBIE WEBER 20



Types of Tests

Black Box
- Behavior only – ADT requirements

- From an outside point of view

- Does your code uphold its contracts with its users?

- Performance/efficiency

White Box
- Includes an understanding of the implementation

- Written by the author as they develop their code

- Break apart requirements into smaller steps

- “unit tests” break implementation into single assertions

CSE 373 19 SU - ROBBIE WEBER 21



What to test?

Expected behavior
- The main use case scenario

- Does your code do what it should given friendly conditions?

Forbidden Input
- What are all the ways the user can mess up?

Empty/Null
- Protect yourself!

- How do things get started?

- 0, -1, null, empty collections

Boundary/Edge Cases
- First items

- Last item

- Full collections (resizing)

Scale
- Is there a difference between 10, 100, 1000, 10000 items?

CSE 373 19 SU - ROBBIE WEBER 22



Testing Strategies

You can’t test everything
- Break inputs into categories

- What are the most important pieces of code?

Test behavior in combination
- Call multiple methods one after the other

- Call the same method multiple times

Trust no one!
- How can the user mess up?

If you messed up, someone else might
- Test the complex logic

23CSE 373 19 SU - ROBBIE WEBER



Thought Experiment

Discuss with your neighbors: Imagine you are writing an implementation of the List interface that 
stores integers in an Array. What are some ways you can assess your program’s correctness in the 
following cases:

Expected Behavior
- Create a new list

- Add some amount of items to it

- Remove a couple of them

Forbidden Input
- Add a negative number

- Add duplicates

- Add extra large numbers

- Add something to index 10 of a size 3 list

Empty/Null
- Call remove on an empty list

- Add to a null list

- Call size on an null list

CSE 373 19 SU - ROBBIE WEBER 24

Boundary/Edge Cases
- Add 1 item to an empty list

- Set an item at the front of the list

- Set an item at the back of the list

Scale
- Add 1000 items to the list

- Remove 100 items in a row

- Set the value of the same item 50 times

5 Minutes



JUnit

JUnit: a testing framework that works with IDEs to give you a special GUI when testing your 
code

@Test

public void myTest() {

MyArrayList<String> basicAl = new MyArrayList<String>();

basicAl.append(“373 Rocks”);

assertThat(basicAl.get(0), is(“373 Rocks”));

}

Assertions:
- assertThat(thingYoureTesting, is(ExpectedResult)) is most common. Calls .equals() method

- May write your own helper methods here to check that internal state is identical.

- Other assertions exist; see official documentation, or our documentation on the webpage.

CSE 373 19 SU - ROBBIE WEBER 25More: https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html

https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html


Review: Generics

// a parameterized (generic) class

public class name<TypeParameter> {

...

}

- Forces any client that constructs your object to supply a 
type

- Don't write an actual type such as String; the client does that

- Instead, write a type variable name such as E (for "element") or T (for 
"type")

- You can require multiple type parameters separated by commas

- The rest of your class's code can refer to that type by 
name

26

public class Box { 

private Object object; 

public void set(Object object) { 

this.object = object; 

}

public Object get() { 

return object; 

} 

}

public class Box<T> { 

private T t; 

public void set(T t) { 

this.t = t; 

}

public T get() { 

return t; 

} 

}

More details: https://docs.oracle.com/javase/tutorial/java/generics/types.html
CSE 373 19 SU - ROBBIE WEBER

https://docs.oracle.com/javase/tutorial/java/generics/types.html


Dictionaries

CSE 373 19 SU - ROBBIE WEBER 27



Dictionaries (aka Maps)

Every Programmer’s Best Friend

You’ll use one in every single programming project.
- Because I don’t think we could really design an interesting project that doesn’t use one.

CSE 373 19 SU - ROBBIE WEBER 28



Review: Maps 

map: Holds a set of unique keys and a collection of 
values, where each key is associated with one value.
- a.k.a. "dictionary"

CSE 373 19 SU - ROBBIE WEBER 29

key value

“you" 22

key value

“in" 37

key value

“the" 56

key value

“at" 43

map.get("the") 56

Dictionary ADT

put(key, item) add item to 

collection indexed with key

get(key) return item 

associated with key

containsKey(key) return if key 

already in use

remove(key) remove item 

and associated key

size() return count of items

state

behavior

Set of items & keys

Count of items

supported operations:
- put(key, value): Adds a given item 

into collection with associated key, if 
the map previously had a mapping 
for the given key, old value is 
replaced

- get(key): Retrieves the value mapped 
to the key

- containsKey(key): returns true if key is 
already associated with value in map, 
false otherwise

- remove(key): Removes the given key 
and its mapped value



Implementing a Dictionary with an Array

30

ArrayDictionary<K, V>

put create new pair, add to 

next available spot, grow 

array if necessary

get scan all pairs looking 

for given key, return 

associated item if found

containsKey scan all pairs, 

return if key is found

remove scan all pairs, 

replace pair to be removed 

with last pair in collection

size return count of items in 

dictionary

state

behavior

Pair<K, V>[] data

Big O Analysis

put()

get()

containsKey()

remove()

size() O(1) constant

O(N) linear

O(N) linear

O(N) linear

O(N) linear

0 1 2 3

put(‘a’, 1)

put(‘b’, 2)

put(‘c’, 3)

put(‘d’, 4)

remove(‘b’)

put(‘a’, 97)

(‘a’, 1) (‘b’, 2)

Dictionary ADT

put(key, item) add item to 

collection indexed with key

get(key) return item 

associated with key

containsKey(key) return if key 

already in use

remove(key) remove item 

and associated key

size() return count of items

state

behavior

Set of items & keys

Count of items

(‘c’, 3)97) (‘d’, 4)

CSE 373 19 SU - ROBBIE WEBER

2 Minutes



Implementing a Dictionary with Nodes

31

LinkedDictionary<K, V>

put if key is unused, create new with 

pair, add to front of list, else 

replace with new value

get scan all pairs looking for given 

key, return associated item if found

containsKey scan all pairs, return if 

key is found

remove scan all pairs, skip pair to be 

removed 

size return count of items in 

dictionary

state

behavior

front

size

Big O Analysis

put()

get()

containsKey()

remove()

size() O(1) constant

O(N) linear

O(N) linear

O(N) linear

O(N) linear

put(‘a’, 1)

put(‘b’, 2)

put(‘c’, 3)

put(‘d’, 4)

remove(‘b’)

put(‘a’, 97)

Dictionary ADT

put(key, item) add item to 

collection indexed with key

get(key) return item 

associated with key

containsKey(key) return if key 

already in use

remove(key) remove item 

and associated key

size() return count of items

state

behavior

Set of items & keys

Count of items

front

‘b’ 2‘c’ 3 ‘a’ 1‘d’ 4 97

CSE 373 19 SU - ROBBIE WEBER

2 Minutes


