
Lecture 1: Welcome! CSE 373: Data Structures and 

Algorithms

1CSE 373 19 SU - ROBBIE WEBER



2

Agenda

-Introductions

-Syllabus

-Dust off cob webs 

-Meet the ADT

CSE 373 19 SU - ROBBIE WEBER



Course Staff

Instructor:
Robbie Weber

rtweber2@cs.washington.edu
Office: CSE 330
Office Hours: 
M,W 2:20-3:30 and by 
appointment

CSE 373 19 SU - ROBBIE WEBER 3

Amazing Teaching Assistants:

Ph.D. student in CSE

Research in algorithm design

2nd time as instructor

TAed 15 times 

(3 times for this course)

Brian Chan

Zach Chun

Kevin Son

Oscar Sprumont

Matthew Taing

Howard Xiao

Blarry Wang

Xin Yang

Velocity Yu

mailto:rtweber2@cs.washington.edu


Class Style

Please come to lecture (yes, there will be panoptos)

- Warm Ups -> Extra Credit

- Discuss with other students 

- Ask questions! Point out mistakes!

Sections

- TAs = heroes

- Practice problems

- Different Explanations

- Sections start this week

4CSE 373 19 SU - ROBBIE WEBER



Class Style

Summer Quarter is weird.

We have fewer class meetings

But they’re all 60 minutes, not 50 minutes.

We’ve rearranged (and cut) things to account for the schedule 

But things are more cramped.

Please start on assignments early and ask for help early

TAs are amazing – we can help A LOT 3 days before an assignment is due.

There’s only so much we can do 3 hours before it’s due.

CSE 373 SU 19 – ROBBIE WEBER 5



Course Administration
Course Page cs.washington.edu/373
- Course content posted here

- Pay attention for updates!

Canvas
- Grades will be posted to Canvas at end of quarter

Office Hours
- Will be posted on Course Page

- Will start next week (at the latest)

Piazza
- If you were signed up for the course before this morning, you were added already.

- If not, you can find an add code on Canvas (or ask a member of staff)

- Announcements made via Piazza

- Great place to discuss questions with other students

- Will be monitored by course staff

- No posting of project code!

Textbook
- Optional

- Data Structures and Algorithm Analysis in Java by Mark Allen Weiss

6CSE 373 19 SU - ROBBIE WEBER

http://cs.washington.edu/373


Grade Break Down

Homework (55%)
- Programming Projects (35%) 

- 1 Individual Project (review of 14X)

- 4 Partner Projects
- Partners GREATLY encouraged

- Graded automatically

- Regrades available on some parts

- Some projects are two connected one-week assignments; others are just one week.

- Written Assignments (20%)
- Written assignments graded by TAs

Exams (45%)
- Midterm Exam – Friday July 26th in class (15%)

- Final Exam (30%)
- Two one-hour parts:

- In place of final section Thursday August 22

- In place of final lecture Friday August 23

If you have a conflict with any of those dates, email Robbie as soon as possible.

7CSE 373 19 SU - ROBBIE WEBER



Syllabus

Homework Policies
- 4 late days

- Both partners must use one for pair projects

- When you run out you will forfeit 20% each 24 hour 
period an assignment is late

- No assignment will be accepted more than 2 days late

Regrades
- For assignments with two parts: automatically get back 

half missed points for part 1 when you turn in part 2

- If you think we made a mistake grading (or the 
autograder did something unreasonable):

- Fill out a regrade request on gradescope for written 
work

- Fill out the google form for programming projects

8

Academic Integrity
- Discussing concepts and high-level ideas for problems 

is strongly encouraged, but submitted work must be 
your own.

- Read policy on the webpage.

- No posting code on discussion board or ANYWHERE 
online

- We do run MOSS

- No directly sharing code with one another (except for 
partners)

Extra Credit
- Available for attending lecture, by filling out 

PollEverywhere questions

- Based on completion not correctness.

- Worth up to 0.05 GPA bump

CSE 373 19 SU - ROBBIE WEBER



Questions?

9

Clarification on syllabus, General complaining/moaning

CSE 373 19 SU - ROBBIE WEBER



What is this class about?

10

DATA STRUCTURES

How do we organize our data most 
effectively?

And how do we justify those decisions

Actually implement data structures

Not just use them 

CSE 373 19 SU - ROBBIE WEBER

Some classic, fundamental algorithms

How they work

How do we get them use them to 

solve problems

TOOLS TO MAKE AND ANALYZE DS&ALGS

Basic Software Engineering Practices

Debugging

Testing 

Version Control

Basic Theoretical Computer Science

Modelling Code/Big-O

Analyzing Recurrences

ALGORITHMS 



Data Structures and Algorithms

11

What are they anyway?

CSE 373 19 SU - ROBBIE WEBER



Basic Definitions

Data Structure
-A way of organizing, storing, accessing, and updating a set of data

-Examples from CSE 14X: arrays, linked lists, binary search trees

Algorithm
-A series of precise instructions guaranteed to produce a certain answer

-Examples from CSE 14X: binary search, merge sort

12CSE 373 19 SU - ROBBIE WEBER



Abstract Data Types (ADT)

Abstract Data Types
- A definition for expected operations and behavior

Start with the operations you want to do then define how those operations will play out on 
whatever data is being stored

CSE 143 WI 18 – STUART REGES 13

- each element is accessible by a 0-based index

- a list has a size (number of elements that have been 
added)

- elements can be added to the front, back, or elsewhere

- in Java, a list can be represented as an ArrayList object

Review: List - a collection storing an ordered sequence of elements



Review: Interfaces

interface: A list of methods that a class promises to 
implement.
- Interfaces give you an is-a relationship without code sharing.

- A Rectangle object can be treated as a Shape but inherits no code.

- Analogous to non-programming idea of roles or certifications:

- "I'm certified as a CPA accountant.
This assures you I know how to do taxes, audits, and consulting."

- "I'm 'certified' as a Shape, because I implement the Shape interface.
This assures you I know how to compute my area and perimeter."

public interface name {

public type name(type name, ..., type name);

public type name(type name, ..., type name);

...

public type name(type name, ..., type name);

}

CSE 143 SP 17 – ZORAH FUNG 14

Example

// Describes features common to all 
// shapes.
public interface Shape {

public double area();
public double perimeter();

}



Review: Java Collections

Java provides some implementations of ADTs for you!

You used:

Lists List<Integer> a = new ArrayList<Integer>();

Stacks Stack<Character> c = new Stack<Character>();

Queues Queue<String> b = new LinkedList<String>();

Maps Map<String, String> d = new TreeMap<String, String>();

15CSE 373 19 SU - ROBBIE WEBER



Full Definitions

Abstract Data Type (ADT)
-A definition for expected operations and behavior

-A mathematical description of a collection with a set of supported operations and 
how they should behave when called upon

-Describes what a collection does, not how it does it

-Can be expressed as an interface

-Examples: List, Map, Set

Data Structure
-A way of organizing and storing related data points

-An object that implements the functionality of a specified ADT

-Describes exactly how the collection will perform the required operations

-Examples: LinkedIntList, ArrayIntList

16CSE 373 19 SU - ROBBIE WEBER



ADTs we’ll discuss this quarter

-List

-Set

-Map

-Stack

-Queue

-Priority Queue

-Graph

-Disjoint Set

17CSE 373 19 SU - ROBBIE WEBER



Case Study: The List ADT

list: stores an ordered sequence of information. 
-Each item is accessible by an index.

-Lists have a variable size as items can be added and removed

18CSE 373 19 SU - ROBBIE WEBER

List ADT

get(index) return item at index

set(item, index) replace item at index

append(item) add item to end of list

insert(item, index) add item at index

delete(index) delete item at index

size() count of items

state

behavior

Set of ordered items

Count of items

supported operations:
- get(index): returns the item at the given index
- set(value, index): sets the item at the given index to the given value
- append(value): adds the given item to the end of the list
- insert(value, index): insert the given item at the given index maintaining 
order

- delete(index): removes the item at the given index maintaining order
- size(): returns the number of elements in the list



Case Study: List Implementations

19CSE 373 19 SU - ROBBIE WEBER

List ADT

get(index) return item at index

set(item, index) replace item at index

append(item) add item to end of list

insert(item, index) add item at index

delete(index) delete item at index

size() count of items

state

behavior

Set of ordered items

Count of items

ArrayList<E>

get return data[index]

set data[index] = value

append data[size] = 

value, if out of space 

grow data

insert shift values to 

make hole at index, 

data[index] = value, if 

out of space grow data

delete shift following 

values forward

size return size 

state

behavior

data[]

size

LinkedList<E>

get loop until index, 

return node’s value

set loop until index, 

update node’s value

append create new node, 

update next of last node

insert create new node, 

loop until index, update 

next fields

delete loop until index, 

skip node

size return size 

state

behavior

Node front

size

ArrayList

uses an Array as underlying storage

LinkedList

uses nodes as underlying storage

0 1 2 3 4

88.6 26.1 94.4 0 0

88.6 26.1 94.4

list free space



Implementing ArrayList

CSE 373 19 SU - ROBBIE WEBER 20

ArrayList<E>

get return data[index]

set data[index] = value

append data[size] = 

value, if out of space 

grow data

insert shift values to 

make hole at index, 

data[index] = value, if 

out of space grow data

delete shift following 

values forward

size return numberOfItems

state

behavior

data[]

size

0 1 2 3

insert(10, 0) 3 4 5

numberOfItems = 3

insert(element, index) with shifting

0 1 2 3

3 4 5

numberOfItems = 43

delete(index) with shifting

54310

4

delete(0) 10 3 4 5

Take 2 Minutes

Should we overwrite index 3 with null?



0 1 2 3 4 5 6 7

Implementing ArrayList

CSE 373 19 SU - ROBBIE WEBER 21

ArrayList<E>

get return data[index]

set data[index] = value

append data[size] = 

value, if out of space 

grow data

insert shift values to 

make hole at index, 

data[index] = value, if 

out of space grow data

delete shift following 

values forward

size return size 

state

behavior

data[]

size

0 1 2 3

append(2) 3 5

numberOfItems = 

append(element) with growth

410

4

2

5



Design Decisions

For every ADT there are lots of different ways to implement them

Based on your situation you should consider:
- Memory vs Speed

- Generic/Reusability vs Specific/Specialized

- One Function vs Another

- Robustness vs Performance

This class is all about implementing ADTs based on making the right design tradeoffs!

> A common topic in interview questions

CSE 373 19 SU - ROBBIE WEBER 22



Case Study: List Implementations

23CSE 373 19 SU - ROBBIE WEBER

List ADT

get(index) return item at index

set(item, index) replace item at index

append(item) add item to end of list

insert(item, index) add item at index

delete(index) delete item at index

size() count of items

state

behavior

Set of ordered items

Count of items

ArrayList<E>

get return data[index]

set data[index] = value

append data[size] = 

value, if out of space 

grow data

insert shift values to 

make hole at index, 

data[index] = value, if 

out of space grow data

delete shift following 

values forward

size return size 

state

behavior

data[]

size

LinkedList<E>

get loop until index, 

return node’s value

set loop until index, 

update node’s value

append create new node, 

update next of last node

insert create new node, 

loop until index, update 

next fields

delete loop until index, 

skip node

size return size 

state

behavior

Node front

size

ArrayList

uses an Array as underlying storage

LinkedList

uses nodes as underlying storage

0 1 2 3 4

88.6 26.1 94.4 0 0

88.6 26.1 94.4

list free space

Take 2 Minutes

What method will be much 

faster for LinkedList than for 

ArrayList?



Design Decisions

Dub Street Burgers is implementing a new system for ticket (i.e. food order) management. 

When a new ticket comes in, it is placed at the end of the set of tickets.

Food is prepared in approximately the same order it was requested, but sometimes tickets 
are fulfilled out of order.

Let’s represent tickets as a list. Which of our ADT implementations should we use?

Why?

CSE 373 SU 19 - ROBBIE WEBER 24

Take 2 Minutes



Design Decisions

Let’s represent tickets as a list. Which of our ADT implementations should we use?

Why?

ArrayList

Creating a new ticket is very fast (as long as we don’t resize), and I want the cooks to be 
able to see all the orders right away.

LinkedList

We’ll mostly be removing from the front of the list, which is much faster for the linkedlist (no 
shifting), and I want finished orders to be removed fast so they aren’t distracting.

CSE 373 SU 19 - ROBBIE WEBER 25



Design Decisions

Both ArrayList and LinkedList implementations have pros and cons.

Neither is strictly better than the other.

Some major objectives of this course:

Evaluating pros and cons

Deciding on a design

Defending that design decision

Especially when there’s more than one possible answer.

CSE 373 SU 19 - ROBBIE WEBER 26


