Week 7 Review Session

CSE 373 19su

1. A Heap of Mechanical Problems!

(a) Insert the following values into an empty three-minheap. When applicable, draw out intermediate steps, such as
the different states of the heap before/after a percolation. Please circle (or square, or octagon) your final result.

3,56,9,4,11,0,8,1

(b) Now, call removeMin() on the heap above, and show the percolations (if any) necessary to maintain the heap in-
variant.

1In case you weren't at section, https://xked.com/835/


https://xkcd.com/835/

(c) You are again working with a three-minheap and the same set of values:
3,5,6,9,4,11,0,8,1

Instead of inserting the values one-by-one, use the Floyd’s build-Heap ? algorithm to create a heap using the
above values. Show the initial "heap" without percolations, then show all intermediate steps before you arrived
at your final answer. Were you able to arrive at the same heap?

2CSE 373/332 seem to be the only courses in the US that consistently uses the phrase "Floyd’s buildHeap". USC and Columbia use "buildHeap";
University of Toronto, University of Virginia, Oregon State and New Mexico State use "BuildHeap"; Duke uses "Build-heap"; Florida State and Texas A&M
use "Build-Heap". This question prompt therefore takes the average of each of these variations in consideration of scientific consensus (or the lack of it).



2. Design Decisions -AFTER STORY-

(a) Here are a couple of computational tasks for your consideration. For each one, choose the data structure that
would best suit its needs. Briefly convince yourself of your response. Remember that there might be multiple
valid answers.

Data structures: hash table, AVL tree, heap

i. A popular way to figure out what personal debt to pay towards next is described by the Debt Snowball®

ii.

iii.

method, where you always pay off the smallest debts in amount due before moving on to the larger ones,
regardless which debt you took out first. You are writing a personal finance app and your app needs to
recommend which debt a user should pay towards next.

You are given a long string of text, and you want to know if it contains only unique characters. The text may
contain non-Latin alphabet, like Chinese characters and emojis, so you should not make an assumption about
the number of possible unique characters.

You are writing a web server logger that records all requests to the CSE 373 website. Once in a while, you
want to examine the logs and order them by response time, to see which parts of the website have bottlenecks
that cause inefficiency.

(b) You are writing your own implementation of Quicksort*. Recall that when you are given an input list, you will
have to decide on a pivot selection strategy before you can begin sorting using Quicksort.

i.

For each of the following pivot choices, describe a situation (a specific example or in general) where it would
be a good idea, and another situation where it would be a bad idea. Remember that the pivots determine how
evenly the partitions are split for future recursive calls to QuickSort.

A. The pivot is always the first index.

B. The pivot is always the middle index.

C. The pivot is a randomly chosen index.

Shttps:/ /en.wikipedia.org/wiki/Debt-snowball_method
“Lecture slides for review: https:/ /tiny.cc/lecturel5


https://en.wikipedia.org/wiki/Debt-snowball_method
https://tiny.cc/lecture15

3. Sort Out This Algorithm

(a) Consider the following code that sorts an list of numbers in ascending order:

1 public void sort(ArrayList<Integer> list) {
2 for (int i = 0; i < list.size(); i++) {
int minNum = list.get(i);

y int minAt = i;

5 for (int j = i + 1; j < list.size(); j++) {
6 if (list.get(j) < minNum) {
7 minNum = list.get(j);

8 minAt = j;

5 }

10 }

11 if (i '= minAt) {

12 int temp = arr.get(i);

13 list.set(i, minNum);

14 list.set(minAt, temp);

What sorting algorithm does the code above seem to implement?

(b) What is the best, in practice and worst case of the algorithm? Give sample input(s) to explain your answer.

(c) Is this algorithm in place? How could you tell?

(d) Is this algorithm stable? How could you tell?

(e) Sort the numbers below using the algorithm (you can either rely on the code above or just utilize your under-
standing of the sorting algorithm). Please show work, and note down the swaps that the algorithm performs.

3,1,4,1,5,9



4. Negotiating The Avian Séance °

You are travelling through the Drumbheller Fountain area, and your main goal is to avoid the water splashes that are
unfortunately contanimated by goose droppings. Fortunately, your research mentor in Atmospheric Sciences modeled
Seattle wind velocities and was able to calculate the amount of water that a pedestrian is estimated to receive while
traversing between two buildings near the fountain:

Run Dijkstra’s Algorithm to find the best available path and its cost from your mentor’s lab in JHN to Robbie’s Office
Hours in CSE. You should show intermediate steps (by crossing out intermediate values instead of erasing them). If
you need to break ties between two vertices of equal cost, order again by lexical order.

Vertex | Cost (mL) Predecessor Processed

JHN

MGH

BAG

DF

GUG

CHB

CSE

5https:/ /redd.it/ci93cn


https://redd.it/ci93cn

5. IHope I Get It

In an effort to help CSE 373 students concentrate better, Robbie has asked UW-IT to install wireless jammers in PAA
A118 so that students will no longer have access to the Internet during lecture. Because you are very eager to continue
chatting with your other friends in the class, you decide to create a decentralized chat app using Bluetooth © .

This kind of chat apps utilize a mesh network so that messages can hop between multiple phones. For example, if
Kevin is in range of Zach, and Zach is in range of Matt, then Kevin will be able to send a message to Matt (with one
hop via Zach’s phone). On the other hand, Howard, who is sitting on the other side of the classroom, isn't in range of
anybody else, and therefore he won’t be able to send messages to Kevin, Matt or Zach.

As you develop your chat app, you want to better facilitate mesh network messaging using a graph. Please note that
these design decision questions are open-ended - explain your assumptions for full credit.

(a) For a graph used to model this situation, what would your vertices and edges represent?

(b) What information would you store for each vertex and each edge?

(c) Is your graph: weighted or unweighted? Directed or undirected? Are self-loops acceptable? Do parallel edges
make sense? Very briefly explain.

(d) Beforeyou cansend a message to another person, your app needs to figure out the path that the message will travel.
Howard knows Oscar is somewhere in the room, but doesn’t know how to reach him exactly. Using the graph
that you have designed, explain what algorithm you would use/adapt to explore the best path to reach Oscar.
Your algorithm should be able to tell if it is actually impossible to reach Oscar. Explain how your algorithm will
work and what information will it be storing.

6Tt should be noted here, in the interest of ECE majors taking this course, that this pretext is actually unlikely in real life. This is because both WiFi
and Bluetooth operate on the 2.4GHz ISM band, and to interfere with WiFI operations it is also likely that Bluetooth is affected. Unfortunately, WiFi and
Bluetooth seem to be the only mechanisms available for a mesh network on a mobile phone, so we have to make do. Please write a Piazza post if you have
any suggestions on improving the realism of this problem for future quarters.



(e) Robbie devised a classroom learning activity and asked the TAs to discuss the answers amongst themselves. In
this activity, the left hand side of the classroom will be discussing mergesort, while the right hand side of the
classroom will be discussing quicksort. Because the TAs on one side of the room do not want to bother the TAs
on the other side with unrelated chatter, they want to be able to limit the hops that their messages can reach (they
hypothesize that 2 hops/10 meters on Bluetooth should be enough to only reach one side of TAs). What algorithm
would you use to efficiently discover the names of all TAs that can be reached within a certain number of hops?
Explain how your algorithm will work and what information will it be storing.



