
Recursive Code Modelling Review Session 
 

19su Week 4 
Part 1: Writing Recurrences 
Give a recurrence formula for the running time of each of the following code snippets. You are not 
required to find the exact constant and you are free to use substitutions (𝑐", 𝑐$ etc.) if so desired. You 
also don’t need to find the closed form. 
 
1) CSE 332 18su 
public static int question1(int n) { 
 if (n <= 15) { 
  return n * n; 
 } else { 
  for (int i = 0; i < n; i++) { 
   for (int j = 0; j < i; j++) { 
    System.out.println(i + j); 
   } 
  } 
  return question1(n / 2) + question1(n / 2); 
 } 
} 
 
2) 
public static double question2(double n) { 
 if (n >= 15) { 
  return question2(n – 1) * question2(n – 1); 
 } else { 
  int bonus = 0; 
  for (int i = 0; i < n; i++) { 
   for (int j = 0; j < n; j++) { 
    bonus++; 
   } 
  } 
  return Math.sin(n – 1) * Math.cos(n – 1) + bonus; 
 } 
} 
 
 
3) Let the original number of elements in input be n. 
public static int question3 (DoubleLinkedList<Integer> list) { 
 if (list.size() > 0) { 
  int removed = list.remove(); 

return removed + question3(list); 
 } 
 return 0;  
} 
 
4) 
public static int question4 (int n) { 
 if (n < 3) 
  return 0; 
 
 IDictionary<Integer, Integer> map = new ArrayDictionary<>();  
 int count = 0; 
 for (int i = 0; i < n * n; i++) { 
  for (int j = i; j > 0; j--) { 
   map.put(i, j); 
   count++; 
  } 
 } 
  

return question4(n / 3) + 3 * count * question4(n / 3); 
} 
  

% 𝑐"𝑛$	𝑖𝑓	𝑛 < 15
𝑐$ + 2𝑇(𝑛 − 1)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

:
𝑐"	𝑖𝑓	𝑛 ≤ 15

𝑐$2𝑛$ + 2𝑇 <
𝑛
2
=𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

%
𝑐"	𝑖𝑓	𝑛 == 0

𝑐$ + 𝑇(𝑛 − 1)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
 

%
𝑐"	𝑖𝑓	𝑛 < 3

𝑐$𝑛A + 2𝑇(𝑛/3)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
 



 
Part 2: Are You A Master Who Mastered Master? 
For each of the recurrences below, use the Master Theorem to find the big-θ of the closed form (show 
a, b and c) or explain why you can’t apply the Master Theorem. 
 
1) CSE 373 19sp 

𝑇(𝑛) = %
4	, 𝑛 = 1

8𝑇(𝑛/2) + 𝑛$	, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 
 

𝜃(𝑛^3) 
 
 
 
2) CSE 373 13wi	

𝑇(𝑛) = :
10，	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑇(𝑛/2) + 3，	𝑤ℎ𝑒𝑛	𝑛	 > 	1
 

 
 

𝜃(log	(𝑛)) 
 

 
 
3) 	

𝑇(𝑛) = :
𝑛$，𝑛	 < 	10

𝑛$𝑇(𝑛/2) + 𝑛$，	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
 

Cannot apply master theorem – n^2 is not substitutable for the constant a 
 
 
4) 	

𝑇(𝑛) = %
𝐶", 𝑛 = 1

𝑇(𝑛/2) + 𝐶$𝑒M, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 
 
 

Cannot apply master theorem –e^n is not 𝜃(𝑛N)  
 
 
5) 

	

𝑇(𝑛) = % 1, 𝑛 ≤ 23
𝑇(𝑛	 − 	2) + 2𝑛,				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 
 
 
 
 

Cannot apply master theorem n – 2 is not in the format of n / b where b is a constant  



 
Part 3: Form 1040 -- U.S. Individual Income Tax Return (CSE 373 19sp) 
Consider the same recurrence from Part 2 1): 

𝑇(𝑛) = %
4	, 𝑛 = 1

8𝑇(𝑛/2) + 𝑛$	, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

We again attempt to find the closed form, this time by applying the tree method. If you wish to draw 
the tree, there is space on the back of this sheet. 
 

1 What is the size of the input at each level i ? What is the amount 
of work done by each node at the i-th recursive level? As in class, 
we call the root level i = 0. This means at i = 0, your expression 
for the input should equal n. 
 

 

Input = <M
$O
=			  

Work =<M
$O
=
$
 

2 What is the total number of nodes at level i ? As in class, we call 
the root level i = 0. This means at i = 0, your expression for the 
total number of nodes should equal 1. 
 
 

8P 
 

3 What is the total work done across the i-th recursive level? 
Use information from lines 1 and 2. 8P ∗ <

𝑛
2P
=
$
 

	 
 
 

4 What is the value of i does the last level (base case) of the tree 
occur at? 

log$ 𝑛 
 
 

5 What is the total work done across the base case level of the tree 
(i.e. the last level)? 
 
Use information from the recurrence and parts 2 and 4. 

 
8RSTU M ∗ 4 

= 𝑛V* 4 

6 Combine your answers from previous parts to get an expression for the total work (which you 
will simplify in part 7). 

4𝑛V + W 8P ∗
RSTU MX"

PYZ

<
𝑛
2P
=
$
 

 
 

7 Simplify the expression from part 6 to a closed form (to find the total work done by T(n)). 

4𝑛V + W 8P ∗
RSTU MX"

PYZ

<
𝑛
2P
=
$
 

 
 

4𝑛V + W 8P ∗
RSTU MX"

PYZ

[
𝑛$

2$P
\  

 
 

4𝑛V + W (
8
4
)P ∗

RSTU MX"

PYZ

𝑛$ 

 

4𝑛V + 𝑛$ ∗ W (2)P
RSTU MX"

PYZ

 

 



4𝑛V + 𝑛$ ∗ (𝑛 − 1) 
 

4𝑛V + 𝑛V − 𝑛$) 
 

𝜃(𝑛V) 
 

8 From your answer to part 7, give a simplified tight Big-O of the 
runtime. Compare your answer to Part 2 – 1). Are they the same? 

Yes 

 
 
 

 
 

 
 
 
  

The recurrence is restated for your convenience: 

𝑇(𝑛) = %
4	, 𝑛 = 1

8𝑇(𝑛/2) + 𝑛$	, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 



 
Part 4: Smells Like CSE 143 (CSE 373 18wi Practice) 
In this problem, we will consider an algorithm named isBalanced(String str) that returns 
“true” if the input string has a “balanced” number of parenthesis and false otherwise. We say a string 
has “balanced” parenthesis if each opening paren is paired with a matching closing one. Here are 
some examples: 

((a)b) Balanced 
(x)(y)(z) Balanced 
(((( Unbalanced 
)))z( Unbalanced 

 
1) List at least four distinct kinds of inputs you would try passing into the isBalanced algorithm to 
test it. For each input, also list the expected outcome (assuming the algorithm was implemented 
correctly). Be sure to think about different edge cases. 

• Happy à return true 
o (()) 
o () 
o (a)   

• Unmatched  à return false 
o ()) 
o (() 
o ( 
o ) 
o )( 

• Empty à return true 
o   
o Null 

• Letter strings only à return true 
o abc 

 
2) Here is one (buggy) implementation of this algorithm in Java. List every bug you can find. 
 
public static boolean isBalanced(String str) { 
 if (str == null || str.size() == 0) { 
  return false; 
 } 
 
 int numUnmatedOpenParens = 0; 
 for (char c : str) { 
  if (c == ‘(‘) { 
   numUnmatedOpenParens++; 
  } 
  } else { 
   numUnmatedOpenParens--; 
  } 
 } 
 return numUnmatedOpenParens == 0; 
} 
 
 
 

• empty/null should return true, but returns false 
• letters are recognized as open parens so (a returns true 
• order of open/closing matters, but code doesn’t care about )( returns true 

 
 
 
  



 
Part 5: Oh AVL Tree! 
Three Binary Search Trees are given to you below, but they are not necessarily AVL trees. Determine 
if the BSTs are also valid AVL trees. If not, point out all nodes that are unbalanced per the definition 
of an AVL tree.   
 

 
 
 No nodes unbalanced, valid AVL tree 

 
 
 
 50 and 42 nodes are unbalanced –  
the node w 50’s  
- left subtree is height -1 
- right subtree height is 1 
 
count the same way for 42 (subtree heights of 
0 and 2) 

 
 
 
 
 
 
 
44, 50, 100 nodes are unbalanced, 
see counting examples above 

 
 
 
J. Melezinek, “Binary Search Tree,” BinaryTreeVisualiser. [Online]. Available: http://btv.melezinek.cz/binary-search-tree.html. 
 


