

1. Trees
(A) Insert the following sequence of values into an empty AVL tree in the given order.

4, 20, 32, 17, 101, 74, 1, 12, 7

Draw your final tree in the following figure (Figure 1), you will not need to fill in all nodes. You may use
the space below Figure 1 to draw your intermediary trees.

Figure 1: Fill in this tree with your final answer. Leave unused nodes empty.

(B) Given the Binary Search Tree in Figure 2 imagine you are asked to delete the overallRoot, 74. Circle all

the nodes in the tree that could take its place without breaking the AVL invariants or moving more
than that single node.

Figure 2

 2

2. Code Modeling

(A) Give the code model f(n) for the worst-case runtime of the m1 method in terms of the number of Strings
stored in the ArrayList words. You may simplify constants to stand in variables such as C1 or C2 (you do not
need to count the exact number of operations).

- Assume all words have the same length, m.
- Assume ArrayList is Java’s implementation of a List using an Array as underlying storage.
- Assume ArrayDictionary is implemented just as you did in Homework 2.

1 public static ArrayDictionary<String, int[]> m1 (ArrayList<String> words) {
2 ArrayDictionary<String, int[]> letCts = new ArrayDictionary<String, int[]>();
3 for (String w : words) {
4 int[] count = new int[26];
5 for (int i = 0; i < w.length(); i++) {
6 count[word.charAt(i) - 'a']++;
7 }
8 letCts.put(w, count);
9 }
10 return letCts;
11 }

[5 points]

(i) Worst case run-time of line #8

n accept any Θ(𝑛) expression

(ii) Worst case run-time of loop between lines #5 and #7 in terms of n and m

𝑐&𝑚 + 𝑐) accept any Θ(𝑚) expression

(iii) Overall worst case run-time of m1 in terms of n (assume m is constant)

C1 + n(C2 + n) accept any Θ(𝑛)𝑚*)	for	all	𝛼

(iv) Simplified tight big O of m1

𝑂(𝑛))

 3

(B) Give the code model f(n) for the worst-case runtime of the m2 method in terms of the number of Strings
stored in the ArrayList words. You may simplify constants to stand in variables such as C1 or C2 (you do not
need to count the exact number of operations).

- Assume all words have the same length, m.
- Assume ArrayList is Java’s implementation of a List using an Array as underlying storage.
- Assume ArrayDictionary is implemented just as you did in Homework 2.
- Assume the AVLMap implements the IDictionary interface with an AVL tree as underlying storage.
- Assume ChainedHashSet is implemented just as you did in Homework 3 and will always resize at a

given load factor l.
- Assume equals methods compare each element in the given structures once.

1 public static AVLMap<String, ChainedHashSet<String>> m3 (
 ArrayList<String> words, ArrayDictionary<String, int[]> letterCounts) {
2 AVLMap<String, ChainedHashSet<String>> anagrams =
 new AVLMap<String, ChainedHashSet<String>>();
3 for (String word : words) {
4 ChainedHashSet<String> myAnagrams = new ChainedHashSet<String>();
5 int[] myLetterCounts = letterCounts.get(word);
6 for (String word : words) {
7 if (!otherWord.equals(word)) {
8 int[] otherLetterCounts = letterCounts.get(otherWord);
9 if (Arrays.equals(myLetterCounts, otherLetterCounts)) {
10 myAnagrams.add(otherWord);
11 }
12 }
13 }
14 anagrams.put(word, myAnagrams);
15 }
16 return anagrams;
17 }

(i) Worst case run-time of line #5 in terms of n n

(ii) Worst case run-time of line #10 when n < l in terms of n and l 1 + l TAs say Strike this L

(iii) Worst case run-time of line #10 in terms of n n

(iv) Worst case run-time of line #14 in terms of n log 𝑛

(v) Worst case run-time of loop between lines #6 and #13 in terms of n (assume m is constant)
n(C1 + n + n) i.e. Θ(𝑛))

(vi) Overall worst case run-time of m3
C1 + n(C2 + n + n(C3 + 2n) + n) i.e. Θ(𝑛4)

(vii) Simplified tight big O of m3
O(n^3)

 4

(C) Consider the following method m3 as well as your work in parts A and B. Give the code model f(n) for
the worst-case runtime of the m3 method in terms of the number of Strings stored in the ArrayList
words. You may simplify constants to stand in variables such as C1 or C2 (you do not need to count the
exact number of operations).

- Assume ArrayList is Java’s implementation of a List using an Array as underlying storage.
- Assume the AVLMap implements the IDictionary interface with an AVL tree as underlying storage.

1 public static ChainedHashSet<String> m3 (ArrayList<String> words){
2 ArrayDictionary<String, int[]> letterCounts = m1(words);
3 AVLMap<String, ChainedHashSet<String>> anagrams = m2(words, letterCounts);
4 String firstWord = words.get(0);
5 return anagrams.get(firstWord);
6 }

(i) Worst case run-time of line #5 in terms of n logn [1 point]

(ii) Simplified tight big O of m3 O(n^3) [1 point for writing dominant term of c(i), a(iv), and b(vii)]

(D) Give the recurrence T(n) for the runtime of the following method mystery. You may simplify all
constants to stand in variables such as C1 or C2 (you do not need to attempt to count the exact number of
operations). YOU DO NOT NEED TO SOLVE this recurrence, just give the base case and a recurrence case.

public int mystery(int n) {
 if (n < 10000) {
 int result = 0;
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < i; j++) {
 result++;
 }
 }
 return result;
 } else {
 return 1 + mystery(n-1) + mystery(n-2);
 }
}

𝑇(𝑛) = 	7 𝐶& +99𝐶)											𝑛 < 10000
=>&

?@A

B>&

=@	A

𝐶4 + 𝑇(𝑛 − 1) + 𝑇(𝑛 − 2)									𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 5

(E) Given the following recurrence T(n) find the exact closed form. You need only to reduce it down so that it
no longer includes T(n) or a summation. You may use either unrolling or tree method, please select your
method and answer only those questions corresponding to your method. If using unrolling, answer I-V on
this page, 7, if using tree method answer I-VI on the following page, 8.

𝑇(𝑛) = 	 M
				8																											𝑤ℎ𝑒𝑛	𝑛 ≤ 1
4𝑇 Q

𝑛
2
R + 𝑛)						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Unrolling [20 points]

I. What are the first three levels of the recurrence unrolled?

𝑖: 1					𝑇(𝑛) = 4𝑇 Q
𝑛
2R + 𝑛

)	

𝑖: 2															 = 4 T4𝑇 Q
𝑛
4R + Q

𝑛
2R

)
U + 𝑛)	

𝑖: 3															 = 4 T4 T4𝑇 Q
𝑛
8R + Q

𝑛
4R

)
U + Q

𝑛
2R

)
U + 𝑛)	

𝑖: 4															 = 	4 T4 T4 T4𝑇 Q
𝑛
16R + Q

𝑛
8R

)
U + Q

𝑛
4R

)
U + Q

𝑛
2R

)
U + 𝑛)	

 𝑖: 2 = 4)𝑇 Q B
)X
R + 4 QB

X

)X
R + 𝑛)	

𝑖: 3	4) T4𝑇 Q
𝑛
24R + Q

𝑛
2)R

)
U +

4
2) 𝑛

) + 	𝑛) = 	44𝑇 Q
𝑛
24R +

4)

4) 𝑛
) + 𝑛) + 𝑛)	

 𝑖: 4			44 T4𝑇 Q B
)Y
R + Q B

)Z
R
)
U + 𝑛) + 𝑛) + 𝑛) = 4[𝑇 Q B

)Y
R + [Z

[Z
𝑛) + 𝑛) + 𝑛) + 𝑛)

II. Give an expression for the ith level of unrolling in terms of T(), n and i

𝑇 QB
)\
R = 4=𝑇 QB

)\
R + ∑ 4? QB

)^
R
)

=>&
?@A = 4=𝑇 QB

)\
R + 𝑖 ⋅ 𝑛)

III. What is the last level of unrolling in terms of n?

= 𝑇 Q
𝑛
2=R = 𝑇(1) →

𝑛
2= = 1 → 𝑛 = 2= → 𝑖 = log) 𝑛

IV. Give an expression for T(n) without any recursion (no remaining T(n) terms)

𝑇 Q
𝑛

2abcX B
R = 4abcX B(8) +	 9 4=>& Q

𝑛
2=>&R

)
abcX B

=@&

OR 4abcX B(8) +	𝑛) log) 𝑛

V. Final closed form of T(n)

𝑇(𝑛) = 8𝑛) +	 9 4=>&
abcX B

=@&

d
𝑛)

(2=>&)^2
f = 8𝑛) + 9 𝑛)

abcX B

=@&

= 8𝑛) + 𝑛) log) 𝑛	

 6

(2E alternative approach) Tree Method

𝑇(𝑛) = 	 M
				8																											𝑤ℎ𝑒𝑛	𝑛 ≤ 1
4𝑇 Q

𝑛
2
R + 𝑛)						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

I. How many nodes are there on level i (assume the root is at level 0)?

4=
II. What is the size of input, n, on level i?

𝑛
2=

What is the total work done on the recursive levels in terms of n and i?

	 9 4= Q
𝑛
2=R

)
abcX B>&

=@A

III. How much work is done in the base case in terms of n?

8g4abcX Bh = 8𝑛)

IV. Final closed form of T(n)

𝑇(𝑛) = 8𝑛) + 9 4= T
1
4U

=
𝑛)

abcX B>&

=@A

	

= 8𝑛) + 9 𝑛)
abcX B>&

=@A

	

= 8𝑛) + 𝑛) log) 𝑛

 7

3. Hashing
For questions 3A and 3B imagine you are working with the following implementation of a hash table
that stores integers greater than 0.

public class KaseyHash {
 private int[] data;
 private int size;

 public KaseyHash() {
 this.data = int[10];
 this.size = 0;
 }
 ...
}

(A) Below is one possible implementation of the put(value) method for the KaseyHash class. Based
on the given code, fill out the table in Figure 3 with the final state of data after calling put on each of
the ints listed below in the given order. (note that the data will initially store all 0s)

public static void put(int value) {
 int naturalHash = value % data.length;
 int hashIndex = naturalHash;
 int i = 0;
 while (data[hashIndex] != 0) {
 i++;
 hashIndex = (naturalHash + i) % data.length;
 }
 data[hashIndex] = value;
}

202, 36, 12, 68, 126, 76, 88

0 1 2 3 4 5 6 7 8 9

88 0 202 12 0 0 36 126 68 76

Figure 3

(B) Below is one possible implementation of the findPos(value) method for the KaseyHash class.
Based on the given code, and the state of data showing in Figure 4, how many probes would it take to
locate each of the following values? A probe is counted as each time you investigate an index of data.
Indicate your answers in the table in Figure 5.

 8

public static int findPos(int value) {
 int naturalHash = value % data.length;
 int hashIndex = naturalHash;
 int i = 0;
 while (data[hashIndex] != 0 && data[hashIndex] != value) {
 i++;
 hashIndex = (naturalHash + i * i) % data.length;
 }
 return hashIndex;
}

0 1 2 3 4 5 6 7 8 9

56 103 72 203 33 156 83

Figure 4

Value 156 72 203 33 83 56 103

of
probes 1 1 1 2 3 3 redacted

Figure 5

4. Heaps
(A) Insert the following sequence of values in the given order, one at a time, into an empty min heap.
Fill in Figure 6 with your final answer, you will not need to fill in all nodes. You may use the space
below Figure 6 to draw your intermediary trees.

13, 42,11, 35, 3, 22, 8, 9

 9

Figure 6: Fill in this tree with your final answer. Leave unused nodes empty.

(B) Given the array in Figure 7 representing the current state of a min heap, fill in the empty array in
Figure 8 with the state of the heap after performing a single removeMin(). You may use the space
below Figure 8 to show your work.

0 1 2 3 4 5 6 7 8 9

8 15 13 32 24 41 29 54 82

Figure 7

0 1 2 3 4 5 6 7 8 9

13 15 29 32 24 41 82 54

Figure 8

 10

5. Asymptotic Analysis
(A) For each of the following functions fill in Figure 9 with the simplified tight O bound and whether the

statement is True or False

Function Tight O Relationship Statement Circle

𝑎(𝑛) = 4𝑛 + 10 𝑂(𝑛) 𝑎(𝑛)	𝑖𝑠	𝑖𝑛	𝑂(𝑛)) True or False

𝑏(𝑛) = 2𝑛 + 𝑛) 𝑂(𝑛)) 𝑏(𝑛)	𝑖𝑠	𝑖𝑛	Ω(𝑛) True or False

𝑐(𝑛) =
1
2
𝑛 + 	2𝑛) + 2B 𝑂(2B) 𝑐(𝑛)	𝑖𝑠	𝑖𝑛	𝑂(𝑛)) True or False

𝑑(𝑛) = log)(5𝑛) 𝑂(𝑙𝑜𝑔𝑛) 𝑑(𝑛)	𝑖𝑠	𝑖𝑛	Ω(𝑛) True or False

𝑒(𝑛) = 	 log)(𝑛4) 𝑂(𝑙𝑜𝑔𝑛) 𝑒(𝑛)	𝑖𝑠	𝑖𝑛	𝜃(𝑙𝑜𝑔𝑛) True or False

𝑓(𝑛) = 	9 𝑖
B>&

=@	A

 𝑂(𝑛)) 𝑓(𝑛)	𝑖𝑠	𝑖𝑛	𝑂(𝑛) True or False

(B) Demonstrate that f(n) is dominated by g(n) by finding a c and n0. You must show your work to receive
any credit.

𝑓(𝑛) = 4𝑛) − 2𝑛 + 9 𝑔(𝑛) = 𝑛)

Two solutions are given here, but there are infinite possible solutions, if correct and complete work is
shown.

4𝑛) ≤ 𝑐 ∙ 𝑛)	𝑤ℎ𝑒𝑛	𝑐 = 4	𝑓𝑜𝑟	𝑛 ≥ 1	
−2𝑛 ≤ 𝑐 ∙ 𝑛)	𝑤ℎ𝑒𝑛	𝑐 = 0	𝑓𝑜𝑟	𝑛 ≥ 1	
9 ≤ 𝑐 ∙ 𝑛)	𝑤ℎ𝑒𝑛	𝑐 = 9	𝑓𝑜𝑟	𝑛 ≥ 1

4𝑛) − 2𝑛 + 9 ≤ 4𝑛) + 0𝑛) + 9𝑛) = 13𝑛)	for	n ≥ 1	
4𝑛) − 2𝑛 + 9 ≤ 𝑐 ∙ 𝑛)	𝑤ℎ𝑒𝑛	𝑐 = 13	𝑎𝑛𝑑	𝑛A = 1	

4𝑛) ≤ 𝑐 ∙ 𝑛)	𝑤ℎ𝑒𝑛	𝑐 = 4	𝑓𝑜𝑟	𝑛 ≥ 1	
−2𝑛 ≤ 𝑐 ∙ 𝑛)	𝑤ℎ𝑒𝑛	𝑐 = 1	𝑓𝑜𝑟	𝑛 ≥ 1	
9 ≤ 𝑐 ∙ 𝑛)	𝑤ℎ𝑒𝑛	𝑐 = 1	𝑓𝑜𝑟	𝑛 ≥ 3

4𝑛) − 2𝑛 + 9 ≤ 4𝑛) + 𝑛) + 𝑛) = 6𝑛)	for	n ≥ 3	
4𝑛) − 2𝑛 + 9 ≤ 𝑐 ∙ 𝑛)	𝑤ℎ𝑒𝑛	𝑐 = 6	𝑎𝑛𝑑	𝑛A = 3

