
CSE 373 18su: Midterm

Name:

UW ID and UW email address:

Instructions

• Do not start the exam until told to do so.

• You have 60 minutes to complete the exam.

• This exam is closed book and closed notes.

• You may not use a graphing calculator, cell phone, or any other electronic devices except a
simple 4-function or scientific calculator, although you should not need one.

• If you need extra space, use the back of the page.

• If you have a question, raise your hand to ask the course staff for clarification.

• Unless otherwise stated runtime analysis is assumed to be worst-case.

Question Max points Earned

Question 1 15
Question 2 16
Question 3 10
Question 4 15
Question 5 15
Question 6 15
Question 7 14

Total 100
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1. True or False (15 points)

(a) An in-order traversal of a BST always will give the elements in sorted order.
T

(b) The runtime of inserting an element into a BST is Θ(logn).
F

(c) f(n) = 4 · n2 + 20000 · n+ 3 dominates g(n) = 20 · n2 − 20 · n+ 20.
T

(d) f(n) = 8 · n · logn+ 108 dominates g(n) = 1020 · n+ 1.
T

(e) log (n2n) ∈ Θ(n · logn)
F

(f) Running Floyd’s build-heap and building a heap through repeated insertion (in the same order as the array)
will always produce different heaps.
F

(g) AVL insert is faster (asymptotically) than linked list insert in all cases (best, worst, and average).
F

(h) A sorted array (min to max) is also a valid min-heap.
T

(i) A complete binary tree is always balanced.
T

(j) A balanced binary tree is always complete.
F
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2. Recurrences (16 points)

Solve these recurrences (give the simplest Big-Θ bound). If the Master Theorem is applicable, state which case you
used (write the inequality). If you use unrolling or the tree method, show your work.

(a)

T (n) =

{
1 if n = 1

7 · T (n/3) + n2 otherwise

logb a < c

Θ(n2)

(b)

T (n) =

{
1 if n = 0

2 · T (n− 1) + 2n otherwise

(
n−1∑
i=0

2i · 2n−i

)
+ 2n =

(
n−1∑
i=0

2n

)
+ 2n = n2n + 2n ∈ Θ(n2n)

(c)

T (n) =

{
1 if n = 1

3 · T (n/3) + n otherwise

logb a = c

Θ(n logn)

(d)

T (n) =

{
1 if n = 1

16 · T (n/4) + n otherwise

logb a > c

Θ(n2)

3. Big-O Notation (10 points)

Let f(n) = 106 · n1.5 + 10−6 · n2. Show that f(n) = O(n2) by finding a constant c and an integer n0 and applying
definition of Big-O.

f(n) = 106 · n1.5 + 10−6 · n2

∀n≥1︷ ︸︸ ︷
≤ 106 · n2 + 10−6n2 = (106 + 10−6)n2

So, if c = 106 + 10−6 and n0 = 2, then f(n) ≤ cn2 ∀n ≥ n0. Thus f(n) ∈ O(n2).
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4. Heaps (15 points)

Consider the following sequence of numbers: 18, 2, 42, 49, 32, 1, 0. This question asks you to build a binary min-heap
with these numbers in two ways.

(a) Use Floyd’s build-heap to build the heap. Draw the heap before and after each percolation (if two consecutive
steps result in an identical heap, you don’t need to re-draw the heap). Finally, write out the final array
representation of the heap.

18

2

49 32

42

1 0

18

2

49 32

0

1 42

0

2

49 32

1

18 42

0 2 1 49 32 18 42

(b) Build the heap using repeated insertions (in the order given: 18, 2, 42, 49, 32, 1, 0) - draw the heap after each
insertion. At the end, draw the array representation of the final heap.

18

2

18

2

18 42

2

18

49

42

2

18

49 32

42

1

18

49 32

2

42

0

18

49 32

1

42 2

0 18 1 49 32 42 2

(c) Is one of these techniques (for a general array) asymptotically faster than the other? What are the big-O worst
case runtimes for Floyd’s build-heap and repeated insertion? Explain why there is or is not a difference in
runtime between these two approaches (a formal proof of runtime is not necessary here, just a qualitative
explanation of the similarities and/or differences between the algorithms).

Yes. Floyd’s build heap is faster at O(n) that repeated insertions at O(n logn). This is because Floyd’s build
heap does the shortest percolations from the largest layers (down - a distance of 0, from the bottom layer),
while repeated insertions does the longest percolations (up - a max distance of logn) from the largest layer.
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5. AVL Trees (15 points)

Execute the following operations on an AVL tree:

Insert(2), Insert(1), Insert(4), Insert(5), Insert(9), Insert(3), Insert(6), Insert(7), Insert(16), Insert(0), remove(6).

You are only required to show the final tree, although drawing intermediate trees may result in partial credit. If
you draw intermediate trees, please circle your final tree for ANY credit. Assume remove always draws replacement
nodes from the right subtree.

4

2

1

0

3

7

5 9

16

6. Hashing (15 points)

(a) Let the capacity of the hash table be 10. Insert elements

12, 11, 17, 22, 14, 25, 15

to a hash table

(i) that uses quadratic probing, and the hash function is the most significant digit (the first digit in the
number: h(42) = 4.

(ii) that uses double hashing, and the first hash function is the most significant digit and the second hash
function is the least significant digit (the last digit: g(42) = 2). Use the second hash function as-is, do
not modify it to make it relatively prime to the table size.

You do not need to consider array re-sizing. Write down the total number of collisions and the hash table
after all insertions in both cases. Assume array indices start at 0.

Quadratic Probing:

14 12 11 22 17 25 15

Number of Collisions: 13

Double Hashing:

12 11 22 14 15 25 17

Number of Collisions: 6

(b) Make a quantitative argument for why double hashing leads to fewer collisions than quadratic probing.

For an array of capacity T , double hashing has T (T − 1) ∈ O(T 2) distinct probing sequences (one for each
combination of h(x) and g(x), while quadratic probing only has T distinct probing sequences (one for each
h(x)).
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7. Algorithm Design (14 points)

The Set ADT defines an order-less collection of unique objects (no object exists more than once in the same set, i.e.
a set cannot contain two 3’s). The set ADT support the following methods

• add(item) - Adds an item to the set. If the item is already contained in the set, the set remains unchanged.

• remove(item) - Removes an item from the set. If the item is not contained in the set, the set remains un-
changed.

• contains(item) - Returns true if item is contained within the set, false otherwise.

(a) In your project, you implemented the Dictionary ADT. A dictionary can be used to implement a Set. Describe
how you could use a Dictionary to implement Set. You can instantiate Dictionaries, and use any of the methods
of the ADT, but you cannot rely on its implementation details. List any fields that your Set implementation
has and their initial values, and write psuedocode for the add, remove, and contains methods.

Algorithm 1 Dictionary Set
dict is a dictionary with boolean values
function add(item)

dict.put(item, true)
function remove(item)

dict.put(item, false)
function contains(item)

return dict.getOrDefault(item, false)
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For the remainder of this question, you can assume that the underlying implementation of the Set is a BST. We call
this type of set a TreeSet. The following questions are about two methods that create Sets out of other sets: union
and intersect:

• union(setA, setB) - Returns a set containing all items that are in either or both of setA and setB.

• intersect(setA, setB) - Returns a set containing only items that are contained in both setA and setB.

Some of these questions will ask you to write psuedo-code. You may assume that you have access to, and can
modify the underlying data structure. You can also use any of the standard tree methods we have discussed in class
or in homework (add, remove, find, contains, isEmpty, balance, findMin, findMax, in-order traversal, pre-order
traversal, post-order traversal), and can assume that these methods give their results in a format most convenient
for you (i.e. get can return either the value of the node or the node object itself, traversals can return a list or an
iterator to nodes or values, etc.)

(b) You want to implement Union for tree set, but think that adding each element one-by-one into the output set
sounds too slow at O(n logn) so you decide to instead find where the root of the second tree would be added
into the first, and append the entire second tree at that location (add the second tree’s root into the first with
all of its children in-tow - see diagram below), giving you O(logn) for union (in place)! Does this strategy
work? If so, make an argument why, if not, provide a counterexample and explain why it is a counterexample.

10

209

Tree 1

6

4

Tree 2

Inserting 
2 into 1

10

209

6

4

No. Consider the following unions: a ⋃
b

c =

a

b

c

The resulting structure is not a valid BST.
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(c) Now you want to implement intersect(setA, setB). Suppose you are using an AVL tree to represent your Sets.
Devise an O(n logn) algorithm to compute the intersection of two sets. Write psuedo-code for intersect(setA,
setB), and analyze the psuedo-code to argue that your algorithm is O(n logn). The return value of your
function should be a new Set.

Algorithm 2 Intersect
function intersect(setA, setB)

result = empty tree set
for all x in setA.inOrderTraversal do

if setB.find(x) then
result.add(x)

return result

The for loop runs once for each element of setA, so at most n times. Since setB is implemented as an AVLtree,
find and add are both O(logn operations, giving an overall runtime of O(n logn).

(d) Now suppose you just want to print out the intersection of two sets rather than construct a new Set data
structure. Devise an O(n) algorithm to do this. Write the psuedo-code for printIntersection(setA, setB), and
analyze you psuedocode to show that it is O(n). The return value of your function should be void.

Algorithm 3 Print Intersectiont
function printIntersection(setA, setB)

A = inorder traversal of setA (as a queue)
B = inorder traversal of setA (as a queue)
while A not empty and B not empty do

if A.peek < B.peek then
A.dequeue

else if B.peek < A.peek then
B.dequeue

else
print(A.dequeue)
B.dequeue

Each traversal is O(n), and we iterate through each traversal at most once, so the overall runtime is O(n).

8



This page is intentionally left empty
Feel free to use this page for scratch paper.

9



10


	True or False (15 points)
	Recurrences (16 points)
	Big-O Notation (10 points)
	Heaps (15 points)
	AVL Trees (15 points)
	Hashing (15 points)
	Algorithm Design (14 points)

