
X) 10 points : Radix Sort

Perform a radix sort of this list of numbers, using a radix of 10, into ascending order:

620 696 298 395 568 971 29 41 531 21

Show the bin/bucket sort conducted in each pass of the radix sort (i.e., as a table).

Write and circle the order of the numbers after each pass of the radix sort.

0 /

Hi

2

620 21 31
55, i,, <5fc* TM 3<?6 67<* P*S>

?<?f 315

Unique ID: «Unique_ID»

531

5c#

G20 <w

X) 10 points : Graph Representation

Consider the following directed, weighted graph:

5

a) Draw an adjacency matrix representation of the above graph.

To'. A 5 c V E ^ 6 H

5 a) 1 / /" 1
I 3 3

C 1

1

I

1 H

3- a

F

6 H l

M 1
r 13I

b) Provide an appropriately tight O (Big-Oh) bound on the time for:

For a given vertex pair (vi, V2), testing whether there is an edge from vi to v2:

Computing the in-degree ofa given vertex: 0 C^)

Enumerating the vertices adjacent to agiven vertex: 0 {_ \J J

Unique ID: «Unique_ID»

0(l)

c) Draw an adjacency list representation ofthe above graph.

c^f£|7]

EMQ»WF»

d) Provide an appropriately tight O (Big-Oh) bound on the time for:

For agiven vertex pair (vi, v2), testing whether there is an edge from vi to v2: 0(d J ^ or

Computing the in-degree of agiven vertex: Q (Jz) (X VJ

Enumerating the vertices adjacent to agiven vertex: 0 (d) --> &c nf\T\

el - arfKijz. ouL~ debtee

Unique ID: «Unique_ID»

X) 10 Points : Topological Sort

Consider the following directed graph:

You will perform two topological sorts on this graph.

In each sort, maintain a "bag" of "pending" vertices. When the processing of a vertex
creates more than one new "pending" vertex, add the new "pending" vertices to the "bag"
in alphabetical order (e.g., push (x) , push (y) , push (z)).

For each topological sort, write and circle the order the graph's vertices are processed.
Show your work to allow partial credit (e.g., show adding and removing from the "bag").

a) Perform a topological sort using a queue to maintain the set of "pending" vertices:

A 5 c d e

/

12.

/ /

* < * *

DAUB

A M S

3

k
E

F G (4 T T

3 I i 1 /

5
/
0

3
/

0 S 0

6
*• *»- A * *

r C F -x 0

C)~ s&\

b) Perform a topological sort using a stack to maintain the set of "pending" vertices:

/
0

9>
i

0

V

C

/

P

s 2

hi

D

Z
/

4.

a
/

6

H 7
/

S

3

i

0.
£

e

&

I
c

14

I

0

F

\ p H X -T A E B C <^&

Unique ID: «Unique_ID»

I

0

b

X) 10 points : Single-Source Shortest Paths

Consider the following directed, weighted graph:

5

a) Step through Dijkstra's algorithm to calculate the single-source shortest paths from
vertex A to every other vertex. Show yoursteps in the table below. Cross out old
values and write in new ones, from left to right in each cell, as the algorithm proceeds.
Also list the vertices in the order which Dijkstra's algorithm marks them known:

Order vertices marked as known: A C GH_J_D_iL^

Vertex Known Distance Path

A a 0 —

B * 5 A

C * a A

D * 7 (o 6 6

E * 3 8

F * 1 H
G X H 3 A $C
H H G 2

Is

b) What is the lowest-cost path from A to F in the graph, as computed above?

c) To guarantee correctness of Dijkstra's algorithm, all edge costsmustbe non-negative.
Imagine the edge from A to B had cost -3. Why would this make it impossible for
any algorithm to provide a correct answer for single-source shortest paths?

/Vo^fve cyc(* A-* 5 •* D->> A *ol>kL <kI(vw
l>">

a(Ay p*)k +o W «W*
\b\& Cycle Q\AJL IMo<t

Unique ID: «Unique_ID»

sr fcy 3 o» •* o\

Jr*A*£

X) 10 points : Minimum Spanning Tree

Consider the following undirected, weighted graph:

5

a) Step through Prim's algorithmto calculate a minimum spanning tree, startingfrom
vertexA. Show your steps in the table below. Cross out old values and write in new
ones, from left to right in each cell, as the algorithm proceeds. Also list the vertices in
the order which Prim's algorithm marks them known:

Order vertices marked as known: AD5CGHEF

Vertex Known Distance Path

A < a
—

B X 5 i A D

C * <2 A

D * I A

E * <5 D

F * 3 3 3 £
G * H I A C

H < H I D G

b) What are the edges in the minimum spanning tree, as computed above?

(8,0) (C,A) (v,A) (t,D) (P,E) (&,C) (H,6)

Unique ID: «Unique_ID»

A

\s

X) 10 Points : Work and Span

Consider the following directed acyclic graph representing the dependencies in a parallel
computation implemented using a fork /join technique.

Eachvertex is annotated with the cost of performing its work.

a) What is the work of this computation (i.e., a number)?

/3£>

b) More generally, what is the work of a computation represented in this manner
(i.e., described in terms of the graph and the cost of each vertex)?

5u«*i of- 4M *tock)f[all \/^riice^

c) What is the span of this computation (i.e., a number)?

?0

d) More generally, what is the span of a computation represented in this manner
(i.e., described in terms of the graph and the cost of each vertex)?

0r \\jl \A/or t5ui*a /w U l*ro *f

£+pe« <*''*€. p<n.tt_ I^K. JUe
<5caP

Unique ID: «Unique_ID»

2

e) Assume two threads are executing a computation. We can illustrate the parallel
work of multiple threads by drawing timelines of the work they execute. For example:

Tl: 10 15 20 1C

V W Y

T2:

X Z

10 20 95

This pair of timelines illustrates a hypothetical computation in which:
Tl: V for 10 units, W for 5 units, idle for 5 units, Y for 80 units
T2: idle for 10 units, X for 10 units, Z for 75 units, idle for 5 units

Draw a timeline using two threads to execute the above graph as quickly as possible.

Be sure your timeline illustrates the start and stop time of each task on each thread.

Tl
o 5

V

IS

A

MS" TS 90

jy

12.

i«5 36 55 */5 S5

f) Would additional threads be able to perform the computation more quickly? Why?

kick '* ^ 5^*1.

iiA &0

\N

Unique ID: «Unique_ID» 10

7) 10 points : MoveToFrontList Concurrency

Consider this pseudocode for a MoveToFrontList, which is correct in a sequential context. It
does not map keys to data items, but instead just tests whether a key is in the list.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

class Node {

Key key;

Node next;

Node) { // Constructor that stores these 2 fields

class MoveToFrontList {

Node front = null;

void insert(Key key) {

front • new Node(key, front);

}

Boolean contains(Key find) {
if(front == null) { return false; }

if(front.key == find) { return true;

Node prev = front;

Node current = front.next;

while(current != null) {

if(current.key == find) {
prev.next = current.next;

current.next = front;

front = current;

return true;

}
current = current.next;

}

return false;

}

We have numbered the lines of code so that you can reference them in your answers. Please do
this, as it will be faster and will keep your answer more concise.

In describing an interleaving, you might write:
Thread1 runs contains (...), stopping between lines 16 and 17.

In describing a modification of the code, you might write:
Insert additional code after line 9:

09a: Node middle = null;

09b: Node back = null;

Replace line 28:
30: return true;

Unique ID: 89 11

Now consider using our MoveToFrontList in a multi-threaded context:

a) Describe an interleaving of insert ("a") and contains ("b") that results in the
insert ("a") being "missed" (i.e., contains ("a") will return false).

T/ ru»$ Conf^itS Cb') ; f»"<fe k «* '»*+ ,
pcw&$ hthr*ei \W> t&Zk cr„jL &%

T2 f*"* enkre.)*cert ('<*')

L»t K& m. Tl overwrite; £**> */»*• ***

as /h ' ***f' v/^/^ ; ^ *le^; ft***' '*

b) Describe an interleaving of insert ("a") and insert ("b") that results in the
insert ("a") being "missed" (i.e., contains ("a") will return false).

/*f

C0v^pltks \oxk\- before. «iS>ftt0ieid' ht Franf

Unique ID: «Unique_ID» 12

c) Describe an interleaving of contains ("a") and contains ("a") that results in
them returning different values (i.e., one returns true and one returns false).

I ^ QH
(I

T?. r**S Co^hmslt (*'7f Joe* Voir fi"<£ *

Tl 4*lk*s a our- v(~ \M* U$f /h Q,dtY~

d) Using any of the mutual exclusion mechanisms discussed in lecture (including those
unique to Java), describe how to fix this class so that it is correct in concurrent usage.
Your only concern is correctness (i.e., performance is not a concern).

*y
nclAn>*>Ul hor^J> ,Mtec¥ G<*A (J)v\ta)vr<,

*Y cUrbrtTz-eJL yjoic/ i^iert (• ^V ^y ' *i*

6 fa -' fy**™ ^ %<*>^ co^rxc, LKcy **y) I

Unique ID: «Unique_ID» 13

8) 10 points : Heap Concurrency

You and a partner are implementing an array-based binary heap. Your partner wants to use
fine-grained locking to simultaneously allow multiple concurrent operations in the heap.
They propose the following strategy for implementing the locking:

1) Guard each location in the array with a lock (i.e., guard each node in the heap with a lock).
Always obtain the lock before reading from or writing to the array location (i.e., the node).

2) Implement percolateUp and percolateDown such that they lock nodes in the course of
the percolation. Before comparing the keys of two nodes, for example, they will lock both
nodes. To ensure nothing else is reading or manipulating the portion of the heap affected by
percolation, they will hold locks they obtain until the percolation completes.

Your partner claims this is a good strategy and that you can work out the details in the course of
the implementation. But you already see two major problems.

a) As described, this approach includes a data race. A critical variable for implementing the
heap's insert and deleteMin operations is unguarded. What is that critical variable?
Give an example of a bad behavior might result from it being unprotected.

The £->€ oP "r^ keeyy ,s u**a u*rcLec(

Twt4r c<- fylektiAfvi. im<>^ f-nJ cfue

b) Why will it be extremely difficult to guard the variable from (a) while also preserving your
partner's desire to allow multiple concurrent operations in the heap?

Guard<*<j c?ti^ \^\i[fa Cd^r^e - ^rai^ej

c) In additional to potential race conditions, the proposed approach has another serious
concurrency problem. What is the name for that problem? How could the problem occur
with this strategy for implementing the locking?

D&JU

Unique ID: 87 . 14

\

a) Provide pseudocode for the class InternTask. We provide its member declarations
and its constructor. You just need to implement the compute () method. Do not use
a sequential cutoff: the base case should process a single Customer. Your
implementation should perform the computation in O(n) work and 0(log n) span.

class InternResult {
Customer[] customers;

Booleantl migrate;
Letter [] letters;

int numMigrate;

InternResult(...) { // Constructor that stores these 4 fields }
}

class InternTask extends RecursiveTask<InternResult> {
Customer[] customers;

Boolean[] migrate;
Letter[] letters;

int low;

int high;

InternTask(...) { // Constructor that stores these 5 fields }

InternResult computet) {

/' box c«te

if (ww^dfe Oouj3) t r

+c$ fe<Wi \Aeuf Tuikrn. Result C

):/

7

Unique ID: «Unique_ID» 15

// fiecurt ivc CaSre

itf Cu***™« «,;<"Uy Mrs, >•*, 0™ ^'1K) fe
)>

^ left-Tack _ WkO
/

.^ , _ _ L./V

r \

i „ , T*\er*. &-etel\ C

y\
5 /

}
}

Unique ID: «Unique_ID» 16

