
Section 05: Solutions

1. Asymptotic Analysis

(a) Applying definitions

For each of the following, choose a c and n0 which show f(n) ∈ O(g(n)). Explain why your values of c and
n0 work.

(i) f(n) = 5000n2 + 6n
√
n and g(n) = n3

Solution:

We are trying to find a c and n0 such that 5000n2 + 6n
√
n ≤ cn3 is true for all values of n ≥ n0. We

start by finding a c and n0 separately for each term in 5000n2 + 6n
√
n.

5000n2 ≤ 5000n3 for all n ≥ 1

6n
√
n = 6n3/2 ≤ 6n3 for all n ≥ 1

Both inequalities are true as long as n ≥ 1, so we can add them together to get

5000n2 + 6n
√
n ≤ (5000 + 6)n3 = 5006n3

for all n ≥ 1.

So, we can pick n0 = 1 and c = 5006. This is not the only solution; many others are possible.
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(ii) f(n) = n(4 + log(n)) and g(n) = n2

Solution:

After simplifying f(n), we have f(n) = 4n + n log(n). We will go term-by-term to find a c and n0

such that 4n+ n log(n) ≤ cn2 is true for all n ≥ n0.

4n ≤ 4n2 for all n ≥ 1

n log(n) ≤ n2 for all n ≥ 1

We add the inequalities together to get

4n+ n log(n) ≤ (4 + 1)n2 = 5n2

for all n ≥ 1.

So, we can pick n0 = 1 and c = 5.

(iii) f(n) = 2n and g(n) = 3n

Solution:

As before, we must find a c and n0 such that 2n ≤ c3n for all n ≥ n0.

Notice that since 2 ≥ 3, multiplying together 2 n times is always going to be smaller the multiplying
together 3 n times (so long as n is a positive number.

So, we can pick c = 1 and n0 = 1.

(b) Runtime Analysis

For each of the following, give a Θ-bound for runtime of the algorithm/operation:

(i) Best-case get in a binary search tree of size n.

Solution:

Θ(1) when the data we’re looking for is at the root.

(ii) Best-case put in a hash table with size n and a current λ = 1 if the collision resolution is:

• Separate chaining

• Linear Probing

Solution:

For separate chaining, Θ(1). For linear probing, Θ(n). (If λ = 1, we must resize first.)
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(iii) Pop a value off a stack containing n elements implemented as an array.

Solution:

Θ(1)

(iv) Finding the minimum value in a BST of size n.

Solution:

In the worst case, Θ(n) (the tree could be degenerate, skewing left).

In the average case, where the tree is balanced, Θ(log(n)).

In the best case, Θ(1) (the tree could be degenerate, skewing right).

(v) Finding the minimum value in a AVL tree of size n.

Solution:

Θ(log(n))

(vi) Print out values in AVL tree of size n.

Solution:

Θ(n)

(vii) Iterating through and printing every element in an array list using a for loop and the get(i) method.

Solution:

Θ(n)

(viii) Pop on a stack containing n elements implemented as a singly-linked list.

Solution:

The answer depends on how the stack is implemented.

If we pop from the front, Θ(1). If we pop from the end (which would be a somewhat silly decision),
Θ(n).

(ix) Inserting a value into an AVL tree of size n, where the value you are inserting is smaller than any other
values currently in the tree.

Solution:

Θ(log(n))
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2. Eyeballing Big-Θ bounds

For each of the following code blocks, what is the worst-case runtime? Give a big-Θ bound. You do not need to
justify your answer.

(a) void f1(int n) {

int i = 1;

int j;

while(i < n*n*n*n) {

j = n;

while (j > 1) {

j -= 1;

}

i += n;

}

}

Solution:

Θ(n4)

One thing to note that the while loop has increments of i+ = n. This causes the outer loop to repeat n3

times, not n4 times.

(b) int f2(int n) {

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

System.out.println(”j = ” + j);

}

for (int k = 0; k < i; k++) {

System.out.println(”k = ” + k);

for (int m = 0; m < 100000; m++) {

System.out.println(”m = ” + m);

}

}

}

}

Solution:

Θ(n2)

Notice that the last inner loop repeats a small constant number of times – only 100000 times.
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(c) int f3(n) {

count = 0;

if (n < 1000) {

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

for (int k = 0; k < i; k++) {

count++;

}

}

}

} else {

for (int i = 0; i < n; i++) {

count++;

}

}

return count;

}

Solution:

Θ(n)

Notice that once n is large enough, we always execute the ‘else’ branch. In asymptotic analysis, we only
care about behavior as the input grows large.

(d) void f4(int n) {

IList<Integer> arr = new DoubleLinkedList<>();

for (int i = 0; i < n; i++) {

if (list.size() > 20) {

list.remove(0);

}

list.add(i);

}

for (int i = 0; i < list.size; i++) {

System.out.println(list.get(i));

}

}

Solution:

Θ(n)

Note that arr would have a constant size of 20 after the first loop. Since this is a DoubleLinkedList, add
and remove would both be Θ(1).
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3. Recurrences and Summations

Find an expression for the total work of the following expressions using the Tree Method, then simplify that sum-
mation to a closed form. If possible, check that the big-O is correct with Master Theorem.

Hint: Just as a reminder, here are the steps you should go through for any Tree Method Problem:

i. Draw the recurrence tree.

ii. What is the size of the input to each node at level i? What is the amount of work done by each node at the i-th
recursive level? As in class, we call the root level i = 0. This means that at i = 0, your expression for the input
should equal n.

iii. What is the total number of nodes at level i? As in class, we call the root level i = 0. This means that at i = 0,
your expression for the total number of nodes should equal 1.

iv. What is the total work done across the i-th recursive level?

v. What value of i does the last level of the tree occur at?

vi. What is the total work done across the base case level of the tree (i.e. the last level)?

vii. Combine your answers from previous parts to get an expression for the total work.

(a) T (n) =

{
T (n− 1) + n2 if n > 19

57 otherwise

Solution:

(i) Here’s a drawing of the tree:

(ii) The input size at level i is n− i (since we subtract the input by 1 at each level). This makes the work
in each recursive case node (n− i)2.

(iii) The number of nodes at any level i is 1 (since each node has a single child).

(iv) Multiplying the work per recursive case node by the recursive nodes per level, we get: 1 · (n− i)2.

(v) The last level of the tree is when n− i = 19. Solving for i gives us i = n− 19.

(vi) The number of nodes in the base case level is 1, and each node does 57 work, so the total work is
1 · 57.
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(vii) Summing up work across all recursive levels and then adding in the base case work, we get:

57 +

(n−19)−1∑
i=0

(n− i)2

(viii) We now simplify the above summation to a closed form:

57 +

n−20∑
i=0

(n− i)2

= 57 +

n−20∑
i=0

n2 − 2in+ i2

= 57 +

n−20∑
i=0

n2 −
n−20∑
i=0

2in+

n−20∑
i=0

i2

= 57 + n2
n−20∑
i=0

1− 2n

n−20∑
i=0

i+

n−20∑
i=0

i2

= 57 + n2(n− 19)− 2n
(n− 19)(n− 20)

2
+

(n− 19)(n− 20)(2[n− 19]− 1)

6

We now have a closed form since there’s no more recursion and no more summations. If we just want
a big-O expression, the dominating term is O

(
n3

)
. Unfortunately, we can’t check our answer with

Master Theorem: the recurrence is not in the proper form!
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(b) T (n) =

{
T (n/2) + n2 if n ≥ 4

5 otherwise

Solution:

(i)

input: n
work: n2

input: n/2
work: (n/2)2

input: n/22

work: (n/22)2

...

input: 2
work: 5

i = 0 (recursive)

i = 1 (recursive)

i = 2 (recursive)

...

(base case)

We assume the input size is a power of 2, so the base case input size is 2 instead of 3.

(ii) The input size is n/2i since we divide the input by 2 at each level, so the work at each recursive node
is (n/2i)2 = n2/22i.

(iii) There is only 1 node at every level.

(iv) The total work at each recursive level is 1 · n2/22i.

(v) The last level of the tree is when n/2i = 2, so i = log2 n− 1.

(vi) Since there is only 1 node at the base case level, the total work is 1 · 5.
(vii)

5 +

log2 n−2∑
i=0

n2

22i

(viii)

5 +

log2 n−2∑
i=0

n2

22i
= 5 + n2

log2 n−2∑
i=0

1

4i

= 5 + n2

log2 n−2∑
i=0

(
1

4

)i

= 5 + n2 1/4
log2 n−1 − 1

1/4− 1

This is a closed form, so we can stop simplifying here. It’s a good exercise to simplify this expression
to the point that you can clearly tell what the big-O is. You can check with Master Theorem (since
log2(1) < 2) that the answer is O

(
n2

)
. Hint: Rewrite 1/4log2(n)−1 as 1/

(
2log2(n/2)

)2
.
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(c) T (n) =

{
2T (n/3) + 5n if n > 1

9 otherwise

Solution:

(i) Here’s a drawing of the tree:

(ii) The input size at level i is n/3i (since we divide the input by 3 at each level). This makes the work in
each recursive case node 5 · (n/3i).

(iii) The number of nodes at level i is 2i (since each node has two children).

(iv) Multiplying the work per recursive case node by the recursive nodes per level, we get: 5 · n
3i · 2i =

5n ·
(
2
3

)i
.

(v) The last level of the tree is when n/3i = 1. Solving for i gives us i = log3(n).

(vi) Work across the base case level: The number of nodes (from previous parts) is 2log3(n), and each node
does 9 work, so the total work is 9 · 2log3(n).

(vii) Summing up work across all recursive levels and then adding in the base case work, we get:

log3(n)−1∑
i=0

5n

(
2

3

)i

+ 9 · 2log3(n)
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(viii) Simplifying to a closed form:

T (n) =

log3(n)−1∑
i=0

5n

(
2

3

)i

+ 9 · 2log3(n)

= 5n

log3(n)−1∑
i=0

(
2

3

)i

+ 9 · 2log3(n)

= 5n

(
2
3

)log3(n) − 1

2/3− 1
+ 9 · 2log3(n)

This is a “closed form” so we can stop simplifying here.

If we want to check our big-O, we can simplify further to find the dominating term:

T (n) = 5n ·
(
2
3

)log3(n) − 1

2/3− 1
+ 9 · 2log3(n)

= 5n · 2
log3(n)/3log3(n) − 1

−1/3
+ 9 · 2log3(n)

= −15n ·
(
nlog3(2)/n− 1

)
+ 9 · nlog3(2)

= 15n− 15nlog3(2) + 9 · nlog3(2)

Notice that log3(2) < 1, so 15n is the dominating term, and the running time is O (n). Applying
Master Theorem, we check that log3(2) < 1, so our expression should be O (n), which matches our
answer.
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4. Modeling

Consider the following method. Let n be the integer value of the n parameter, and let m be the length of Dou-
bleLinkedList. You may assume that n > 7.

public int mystery(int n, DoubleLinkedList<Integer> list) {

if (n < 7) {

System.out.println(”???”);

int out = 0;

for (int i = 0; i < n; i++) {

out += i;

}

return out;

} else {

System.out.println(”???”);

System.out.println(”???”);

out = 0;

for (int i : list) {

out += 1;

for (int j = 0; j < list.size(); j++) {

System.out.println(list.get(j));

}

}

return out + 2 * mystery(n - 4, list) + 3 * mystery(n / 2, list);

}

}

Note: your answer to all three questions should be a recurrence, possibly involving a summation. You do not need
to find a closed form.

(a) Construct a mathematical function modeling the approximate worst-case runtime of this method in terms of
n and m.

Solution:

T (n,m) =

{
1 when n < 7

m3 + T (n− 4,m) + T (n/2,m) otherwise

(b) Construct a mathematical function modeling the exact integer output of this method in terms of n and m.

Solution:

I(n,m) =

{∑n−1
i=0 i when n < 7

m+ 2I(n− 4,m) + 3I(n/2,m) otherwise

(c) Construct a mathematical function modeling the exact number of lines printed out in terms of n and m.

Solution:

P (n,m) =

{
1 when n < 7

2 +m2 + P (n− 4,m) + P (n/2,m) otherwise
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5. AVL/BST

(a) Insert {94, 33, 50, 76, 96, 67, 56, 65, 83, 34} into an initially empty AVL tree.

Solution:

76

50

33

34

65

56 67

94

83 96

(b) Insert {6, 5, 4, 3, 2, 1, 10, 9, 8, 6, 7} into an initially empty AVL tree.

Solution:

6

3

2

1

5

4

9

8

7

10

(c) Suppose you insert 7 elements into a BST. What are the possible heights after the insertions? (Think about
different orders of inserting elements).

Solution:

Any height from 2 (a tree where each internal node has exactly two children) to 6 (a degenerate tree) is
possible.

(d) If you insert 7 elements into an AVL tree, what are the possible heights of the tree?

Solution:

An AVL tree with 7 elements could be height 2 or 3. It cannot be height 4: if the height is 4, then for
the root to be balanced, one subtree must have height 3 and the other at least 2. A height 2 AVL tree
needs at least 4 elements (or the root of the subtree won’t be balanced), so in our 7 element tree, we have
4 elements for one subtree, plus the root, which leaves only 2 elements for the other subtree. But that
subtree was supposed to be height 3, so there just aren’t enough elements to fill it out.

Notice that the AVL tree doesn’t guarantee you the minimum possible height (there are AVL trees with 7
elements of height 3), but it does avoid the worst case.
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(e) More generally, what is the minimum number of nodes in an AVL tree of height 4? Draw an instance of such
an AVL tree.

Solution:

We can approach this problem iteratively (or recursively, depending on your point of view).

First, what is the smallest possible AVL tree of height 0? Well, just a single node:

What about the smallest possible AVL tree of height 1? With some thought, we arrive at this answer:

What about the smallest possible AVL tree of height 2? Well, if we think about this critically, we know
that our tree must contain at least one subtree of height 1 (if it’s any other height, our AVL tree wouldn’t
have height 2). If we’re trying to minimize the number of nodes, we might as well make the other subtree
have a height of 0. That minimizes the total number of nodes.

Now, if only we know what the smallest possible AVL trees of height 1 and 0 were...

We can reuse our answers above to get:

We repeat to get the smallest possible AVL tree of height 3: combine together the smallest possible AVL
trees of heights 1 and 2:

We repeat one more time, for the smallest possible AVL tree of height 4:

If we count the number of nodes, we get 12.
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More generally, we can find the number nodes in the smallest possible AVL tree by computing the following
recurrence:

minNumNodes(h) =


1 if h = 0

2 if h = 1

1 +minNumNode(n− 2) +minNumNodes(n− 1) otherwise

(f) Describe an implementation of delete() for a BST.

Solution:

There are a few different cases we have to consider when deleting data from a tree with really rigid
structure rules like a BST or AVL tree. Let’s start with the easiest.

When the node we want to delete is a leaf node, where it has no left or right children, then great! Just set
the reference pointing to it to null. Easy.

What about a branch node, such that the node has a left or right child (but not both)? Hmm, well that
gets a little trickier, but no worries, we just substitute that deleted node with its singular child. No biggie.

But what about a branch or root node with two children? Which one gets to be the replaced node? We’ll get
to the lazy solution soon, but let’s say you absolutely must replace the node. Maybe your project manager
is super concerned with that small amount of memory. What should that replaced tree look like? Say we
had a tree that looked like this:

76

50

33

34

65

56 67

94

83 96

And then let’s say we want to call delete(50). What should the replaced subtree look like? Well, we
want the tree to keep its BST property for either BST or AVL tree, of course. This means that the replaced
subtree’s root must be such a value that it maintains sortedness (its left values are less, right values are
greater). There are a few possible solutions that depend on implemenation, but one resulting tree could
be:

76

33

34

65

56 67

94

83 96

Now, this resulting tree seems like a stretch, but hear me out. All we did was replace root with the left
subtree, and delegate the right subtree to be the right-most thing in the left subtree. This is still a valid
BST tree. You can flip this around to replace root with the right subtree and delegate the left subtree tot
be the left-most thing in the right subtree, of course. You do you.

The easiest way to actually implement this is to use recursion, where delete() is called with both a key
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and a node, and the return value is the node we want to replace the given node with. If we don’t want to
replace the given node with anything, we can just return the given node itself. In pseudocode, we could
write delete() like this:

function delete(key)
Set the root node of the BST to the result of calling delete(key, root node)

function delete(key, node)
if node is null then return null
else if key is less than node’s key then

Set node’s left node to the result of calling delete(key, left node)
return node

else if key is greater than node’s key then
Set node’s right node to the result of calling delete(key, right node)
return node

. If we reach this point in the method, we know that node is the one we want to delete.
else if node has no children then return null
else if node has one child then return node’s child
else

Let r be node’s right child
Traverse node’s left subtree to find its right-most node and let x be this node
Set r as the right child of x
return node’s left child

(g) Adapt delete() for a BST to work for an AVL tree. Don’t worry if there are some edge cases that don’t quite
work yet, the next part will help with those.

Solution:

If you remember from the last problem, clearly we had a valid AVL tree, and now it’s not. What the heck?
The new tree is more unbalanced than any AVL tree we’ve seen before. If you’ll notice, the 34 node is the
bottom-most non-balanced node, but no insertion into an AVL tree would ever naturally produce that, so
we never wrote rotations for this situation. Trying to make rotations fix this seems complicated. Let’s try
to find some other way.

Your PM is still yelling at you to save memory. One solution is to create a new AVL subtree, inserting each
of the subtree’s data one by one, and then replace the deleted node with this new AVL subtree. Without
worrying about efficiency right now (you won’t like it anyway), we could get a tree that looks like this:

76

34

33 65

56 67

94

83 96

And all is well in the world.

If you really wanted to do some rotations, there is a correct way to do it, and it’s been referenced in lecture
a little bit but won’t be reiterated here. Someone on the internet has done a very good job of explaining
this better than we can here! This is a good resource, I highly recommend looking into the specifics of it
here if you absolutely must rotate.
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(h) Make a more robust (not buggy) delete() for an AVL tree, and try to be as (hint) lazy as possible.

Solution:

What happens when you delete enough stuff that your tree becomes imbalanced? Despite your best efforts
to balance the subtrees? Imagine calling delete(83) and then delete(94). The tree would look like this:

76

34

33 65

56 67

96

And even though we balanced our subtrees, the tree as a whole is not balanced, and yet again, we have
no rotations (unless you went to the resource above) to help us. There must be a better way.

Well, as it so happens, you’ve probably heard that programmers are lazy. This is true. Why else do we get
computers to do stuff for us? Well, one super common way to implement delete() (in any structure, not
just AVL trees) is to implement a dirty bit. This is where we mark a node as “deleted” (“she doesn’t even
go here!”) but don’t actually change the tree at all. Sure, sometimes we get extra stuff that we don’t need,
but this is far easier to implement, and after all three delete calls, we get a tree that looks like this:

76

50

33

34

65

56 67

94

83 96

We know which nodes “aren’t really in the tree” and the tree is still a valid AVL tree. We didn’t save the
memory your PM wanted, but hopefully you can bake them some apologetic cookies.

6. Hash tables

(a) What is the difference between primary clustering and secondary clustering in hash tables?

Solution:

Primary clustering occurs after a hash collision causes two of the records in the hash table to hash to the
same position, and causes one of the records to be moved to the next location in its probe sequence. Linear
probing leads to this type of clustering.

Secondary clustering happens when two records would have the same collision chain if their initial position
is the same. Quadratic probing leads to this type of clustering.
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(b) Suppose we implement a hash table using double hashing. Is it possible for this hash table to have clustering?

Solution:

Yes, though the clustering is statistically less likely to be as severe as primary or secondary clustering.

(c) Suppose you know your hash table needs to store keys where each key’s hash code is always a multiple of two.
In that case, which resizing strategy should you use?

Solution:

Any strategy where the size of the table is not a multiple of two. For example, we could either make the
hash table’s array have an odd initial starting size then double to resize, or we could have use the prime
doubling strategy.

If the table size were a multiple of two, we would end up using only half the available table entries (if we
were using separate chaining) or have more collisions then usual (if we were using open addressing).
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(d) Consider the following key-value pairs.

(6, a), (29, b), (41, d). (34, e), (10, f), (64, g), (50, h)

Suppose each key has a hash function h(k) = 2k. So, the key 6 would have a hash code of 12. Insert each
key-value pair into the following hash tables and draw what their internal state looks like:

(i) A hash table that uses separate chaining. The table has an internal capacity of 10. Assume each bucket
is a linked list, where new pairs are appended to the end. Do not worry about resizing.

Solution:

0 1 2 3 4 5 6 7 8 9

(10,f)

(50,h)

(6,a)

(41,d)

(29,b)

(34,e)

(64,f)

(ii) A hash table that uses linear probing, with internal capacity 10. Do not worry about resizing.

Solution:

(10, f)

0

(64, g)

1

(6, a)

2

(41, d)

3

(50, h)

4 5 6 7

(29, b)

8

(34, e)

9

(iii) A hash table that uses quadratic probing, with internal capacity 10. Do not worry about resizing.

Solution:

(10,f)

0

(50, h)

1

(6,a)

2

(41,d)

3 4 5 6

(64, g)

7

(29,b)

8

(34,e)

9

(e) Consider the three hash tables in the previous question. What are the load factors of each hash table?

Solution:

λ =
7

10
= 0.7
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7. Debugging

Suppose we are trying to implement an algorithm isTree(Node node) that detects whether some binary tree is a
valid one or not, and returns true if it is, and false if it isn’t. In particular, we want to confirm that the tree does
not contain any cycles – there are no nodes where the left and right fields point to their parents.

Assume that the node passed into the method is supposed to be the root node of the tree.

(a) List at least four different test cases for each problem. For each test case, be sure to specify what the input
is (drawing the tree, if necessary), and what the expected output is (assuming the algorithm is implemented
correctly).

Solution:

Some examples of inputs. On an exam, be sure to provide a wide variety of test cases. Some of your cases
should test the “happy” case, some cases should test weird inputs, some cases should test invalid/incorrect
input...

(i) Input: null
Output: true

(ii) Input: a regular, standard tree
Output: true

(iii) Input: a degenerate tree that looks like a linked list
Output: true

(iv) Input: a tree containing a node where either the left or right pointers is pointing to itself
Output: false

(v) Input: a tree containing a node where either the left or right pointers is pointing to some parent
node
Output: false

(vi) Input: a tree containing a node where the left or right pointers is pointing to a neighbor
Output: false
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(b) Here is one (buggy) implementation in Java. List every bug you can find with this algorithm.

public class Node {

public int data;

public Node left;

public Node right;

// We are simplifying what the equals method is supposed to look like in Java.

// This method is technically invalid, but you may assume it’s

// implemented correctly.

public boolean equals(Node n) {

if (n == null) {

return false;

}

return this.data == n.data;

}

public int hashCode() {

// Pick a random number to ensure good distribution in hash table

return Random.randInt();

}

}

boolean isTree(Node node) {

ISet<Node> set = new ChainedHashSet<>();

return isTreeHelper(node, set)

}

boolean isTreeHelper(Node node, ISet<Node> set) {

ISet<Node> set = new ChainedHashSet<>();

if (set.containsKey(node)) {

return false;

} else {

set.add(node);

return isTreeHelper(node.left, set) || isTreeHelper(node.right, set);

}

}

Solution:

Some bugs:

(i) The method does not attempt to handle the case where the input node is null

(ii) If the hashCode returns a random int every time it’s called, it’s going to play havoc with the set – we
wouldn’t be able to reliably insert the node anywhere.

(iii) We are trying to use the ChainedHashSet as a way of keeping track of every node object we’ve pre-
viously visited. However, we override the set with a new, empty one on each recursive call, wiping
out our progress.

(iv) The “or” in the last line should be an “and” – if the left subtree or the right subtree isn’t actually a tree,
we should return ‘false’ right away. Currently, we return false only if both subtrees aren’t actually
trees.
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8. Design Decisions

There isn’t a design decisions problem in this handout, but you should review the questions from previous weeks.
Some design questions in previous sections:

Section 1: Problems 2 and 3
Section 4: Problems 8 and 10
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