
Lecture 30: Final Review CSE 373: Data Structures and 
Algorithms
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Administriva
HW 7 due tonight

Fill out surveys for 5 points of EC!
- Lecture survey
- Section survey
- Our survey

Nominate your Tas for Bob Bandes Award
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After 373…
Get a job
- Prepare for interviews
- Attend CSE career fair in October

Get more coding practice
- Husky Code Student Project (email Kasey)
- Hackathons
- Research
- Open source projects

Become a TA
- Email Pim Lustig, pl@cs.washington.edu

Take more classes
- CSE 417 – more algorithms
- CSE 154 – web programming
- CSE 163 – python libraries for data science
- CSE 374 – C programming and unix
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On the exam

Graphs
- Graph definitions
- Graph implementations
- Graph algorithms

- Traversals: BFS and DFS
- Shortest-path: Dijkstra's algorithm
- Topological sort
- MST algorithms: Prim and Kruskal
- Disjoint set data structure CSE 373 19 SP - KASEY CHAMPION 4

P vs NP
- Definitions of P, NP and NP Complete
- Understand what a reduction is

Design Decisions
- Given a scenario, what ADT, data structure implementation and/or algorithm is best 

optimized for your goals?
- What is unique or specialized about your chosen tool?
- Given a scenario, how does your selection’s unique features contribute to a solution?
- What is the runtime and memory usage of your selection?

- Given a scenario, what changes might you make to a design to better serve your goals?

NOT on the exam
- Finding close form of recurrences with tree method
- writing Java generics and Java interfaces
- writing JUnit
- writing Java syntax

Sorting
- Quadratic sorts: insertion sort, selection sort
- Faster sorts: heap sort, merge sort, quick sort
- Runtimes of all of the above (in the best and worst case)

Memory and Locality
- How to leverage caching

Midterm Topics
- ADTs + data structures
- Asymptotic Analysis

- Code Modeling (including recurrences)
- Complexity Classes
- Big O, Big Omega and Big Theta

- BST & AVL trees
- Hashing

Heaps
- Internal state of tree 
- Array implementation

Coding Projects
- Implementation of each data structure
- Best / Average / Worst case runtime of each data structure
- Testing strategies, debugging strategies



ADTs and Data Structures you’re responsible for

List
- Maintains order of elements

- Flexibility of item manipulation

- Useful in many situations

Stack
- First in last out ordering

Queue
- First in first out ordering

Set
- Unordered collection of unique elements

- Often used to test membership (contains)

Dictionary
- Collection of key value pairs

- Does not maintain order of elements

Tree
- Ordered hierarchy of elements

- Often used for traversals 

Iterator
- Dictates specific order in which to move through elements in a collection

- Allows for a single pass through collection in one direction

Priority Queue
- Highest priority first out

Disjoint Set
- Set of sets
- Provides near constant time operations
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Array
- Set capacity upon creation
- Each element has associated index for quick access
- Leverages caching
Linked Nodes
- Set of objects strung together by references
- Very flexible
- Requires traversals for access
Binary Search Tree
- Specific ordering of elements: left child < parent < right child
- Allows for quicker traversals
- Simple implementation 
AVL Trees
- Same ordering as BST but self-balances to maintain optimal 

height for runtime
- Complex implementation
Hash table
- Optimized for close to constant time look up and insertion

- Optimality dictated by hash function and collision strategy
Heap
- Specific ordering: parent < children
- Fills from left to right to maintain optimal height

For each of the listed 
algorithms make sure 
you understand:

In what situations it is 
useful
- What behavior does the ADT 

actually allow?
- What is unique about this 

ADT?

What are the different 
data structure 
implementation options 
for this ADT and how 
does that impact
- Ease of implementation
- Runtime
- Memory usage

ADTs Data Structures



Algorithms you’re responsible for
Heaps
- percolateUp
- percolateDown
- Floyd’s Build Heap

Sorting
- Insertion
- Selection
- Merge
- Quick
- Heap
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Graphs
- Breadth First Search (BFS)
- Depth First Search (DFS)
- Dijkstra’s
- Topological Sort
- Prim’s MST
- Kruskal’s MST

Disjoint Sets
- Union by rank
- Path compression

For each of the listed 
algorithms make sure 
you understand:

In what situations it is 
useful
- What will this tell us about 

the data
- What state should the data 

be in to use it?

The pros and cons of the 
algorithm in terms of
- Runtime – best, average and 

worst
- Memory usage



Insertion Sort 
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0 1 2 3 4 5 6 7 8 9
2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted ItemsCurrent Item

public void insertionSort(collection) {
for (entire list) 

if(currentItem is bigger than nextItem)  
int newIndex = findSpot(currentItem);
shift(newIndex, currentItem);

}
public int findSpot(currentItem) {

for (sorted list)
if (spot found) return

}
public void shift(newIndex, currentItem) {

for (i = currentItem > newIndex)
item[i+1] = item[i]

item[newIndex] = currentItem
}

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

O(n2)

O(n)

Yes

Yes

O(n2)



Selection Sort 
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public void selectionSort(collection) {
for (entire list) 

int newIndex = findNextMin(currentItem);
swap(newIndex, currentItem);

}
public int findNextMin(currentItem) {

min = currentItem
for (unsorted list)

if (item < min) 
min = currentItem

return min
}
public int swap(newIndex, currentItem) {

temp = currentItem
currentItem = newIndex
newIndex = currentItem

}

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

O(n2)

O(n2)

No

Yes

O(n2)

0 1 2 3 4 5 6 7 8 9
2 3 6 7 18 10 14 9 11 15

Sorted Items Unsorted ItemsCurrent Item



In Place Heap Sort
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public void inPlaceHeapSort(collection) {
E[] heap = buildHeap(collection)
for (n) 

output[n – i - 1] = removeMin(heap)
}

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

O(nlogn)

O(nlogn)

No

Yes

O(nlogn)

0 1 2 3 4 5 6 7 8 9

15 17 16 18 20 22 14 4 2 1

Heap Sorted Items
Current Item

Complication: final array is reversed!
- Run reverse afterwards (O(n))
- Use a max heap
- Reverse compare function to emulate max heap



Merge Sort
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mergeSort(input) {
if (input.length == 1)

return
else

smallerHalf = mergeSort(new [0, ..., mid])
largerHalf = mergeSort(new [mid + 1, ...])
return merge(smallerHalf, largerHalf)

}

0 1 2 3 4
8 2 57 91 22

0 1
8 2

0 1 2
57 91 22

0
8

0
2

0
57

0 1
91 22

0
91

0
22

0 1
22 91

0 1 2
22 57 91

0 1
2 8

0 1 2 3 4
2 8 22 57 91

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

1 if n<= 1
2T(n/2) + n otherwise

Yes

No

T(n) = 

= O(nlogn)



Quick Sort
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0 1 2 3 4 5 6

20 50 70 10 60 40 30

0 1 2 3 4

50 70 60 40 30

0

10

0 1

40 30

0 1

70 60

0

30

0

60

0 1

30 40

0 1

60 70

0 1 2 3 4

30 40 50 60 70

0 1 2 3 4 5 6

10 20 30 40 50 60 70

quickSort(input) {
if (input.length == 1)

return
else

pivot = getPivot(input)
smallerHalf = quickSort(getSmaller(pivot, input))
largerHalf = quickSort(getBigger(pivot, input))
return smallerHalf + pivot + largerHalf

}

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

1 if n<= 1

n + T(n - 1) otherwise
T(n) = 

1 if n<= 1

n + 2T(n/2) otherwise
T(n) = 

No

No

=O(n2) 

=O(nlogn) 



Better Quick Sort
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0 1 2 3 4 5 6 7 8 9

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

6 1 4 9 0 3 5 2 7 8

Low
X < 6

High
X >= 6

0 1 2 3 4 5 6 7 8 9

6 1 4 2 0 3 5 9 7 8

Low
X < 6

High
X >= 6

Compare three elements: leftmost, rightmost and center
Swap elements if necessary so that
Arr[0] = smallest
Arr[center] = median of three



Better Quick Sort
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quickSort(input) {
if (input.length == 1)

return
else

pivot = getPivot(input)
smallerHalf = quickSort(getSmaller(pivot, input))
largerHalf = quickSort(getBigger(pivot, input))
return smallerHalf + pivot + largerHalf

}

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

1 if n<= 1
n + 2T(n/2) otherwiseT(n) = 

No

Yes

0 1 2 3 4 5 6 7 8 9
6 1 4 2 0 3 5 9 7 8

=O(nlogn) 



Graph: Formal Definition
A graph is defined by a pair of sets G = (V, E) where…
- V is a set of vertices

- A vertex or “node” is a data entity

- E is a set of edges
- An edge is a connection between two vertices
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A

B

CD

E

F

G

H

V = { A, B, C, D, E, F, G, H }

E = { (A, B), (A, C), (A, D), (A, H), 
(C, B), (B, D), (D, E), (D, F),
(F, G), (G, H)}



Graph Vocabulary
Graph Direction
- Undirected graph – edges have no direction and are two-way

- Directed graphs – edges have direction and are thus one-way

Degree of a Vertex
- Degree – the number of edges containing that vertex

for undirected graph: A : 1, B : 2, C : 1
- In-degree – the number of directed edges that point to a vertex

A : 0, B : 2, C : 1
- Out-degree – the number of directed edges that start at a vertex

A : 1, B : 1, C : 1
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A B

C

V = { A, B, C }
E = { (A, B), (B, C) } inferred (B, A) and (C,B)

V = { A, B, C }
E = { (A, B), (B, C), (C, B) } A

B

C

Undirected Graph:

Directed Graph:



Graph Vocabulary
Self loop – an edge that starts and ends at the same vertex

Parallel edges – two edges with the same start and end vertices

Simple graph – a graph with no self-loops and no parallel edges
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Dany Drogo

Petyr

Margaery Renly

Loras

Brienne



Adjacency Matrix
A B C D

A T T

B

C T T

D T
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Assign each vertex a number from 0 to V – 1

Create a V x V array of Booleans

If (x,y) ∈ E then arr[x][y] = true

Runtime (in terms of V and E)
- get out - edges for a vertex O(v)

- get in – edges for a vertex O(v)

- decide if an edge exists O(1)

- insert an edge O(1)

- delete an edge O(1)

- delete a vertex

- add a vertex

How much space is used?

V2

A

B

C

D



Graph Vocabulary
Dense Graph – a graph with a lot of edges

E ∈ Θ(V2)

Sparse Graph – a graph with “few” edges

E ∈ Θ(V)

An Adjacency Matrix seems a waste for a sparse graph… 
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Stark Lannister

TyrellsTargaryens

Jon
Sam

Yoren

Pyp

Eddison



Create a Dictionary of size V from type V to Collection of E
If (x,y) ∈ E then add y to the set associated with the key x

Runtime (in terms of V and E)
- get out - edges for a vertex O(1)
- get in - edges for a vertex O(V + E)
- decide if an edge exists O(1)
- insert an edge O(1)
- delete an edge O(1)
- delete a vertex
- add a vertex

How much space is used?
V + E

Adjacency List
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0

1

2

3

A

B

C

D

A

B

C

D

B C

B D

A



Walks and Paths
Walk – continuous set of edges leading from vertex to vertex 

A list of vertices where if I is some int where 0 < 1 < Vn every pair (Vi, Vi+1) in E is true

Path – a walk that never visits the same vertex twice
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Winterfell

Castle 
Black

King’s 
Landing

Casterly
Rock

Winterfell

Castle 
Black

King’s 
Landing

Casterly
Rock



Connected Graphs
Connected graph – a graph where every vertex is 
connected to every other vertex via some path. It 
is not required for every vertex to have an edge to 
every other vertex

There exists some way to get from each vertex to 
every other vertex
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Sansa

Robb

Bran

Arya

Rickon

Jon

Dany

Connected Component – a subgraph in 
which any two vertices are connected via 
some path, but is connected to no 
additional vertices in the supergraph
- There exists some way to get from each vertex 

within the connected component to every other 
vertex in the connected component

- A vertex with no edges is itself a connected 
component

Viserys



Breadth First Search

Current node:

Queue:

Visited:
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F

B

C

D
A

E

G

H

I

J

A B

A

B E C

D

D F G

BDE

H

E

C

C

F

F

G

G

I

G

H

HI

I

search(graph) 
toVisit.enqueue(first vertex)
while(toVisit is not empty) 

current = toVisit.dequeue()
for (V : current.neighbors())

if (V is not in queue) 
toVisit.enqueue(v)

visited.add(current)



Depth First Search
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F

B

C

D
A

E

G

H

I

J

dfs(graph) 
toVisit.push(first vertex)
while(toVisit is not empty) 

current = toVisit.pop()
for (V : current.neighbors())

if (V is not in stack) 
toVisit.push(v)

visited.add(current)

Current node:

Stack:

Visited: A B

A

B EC

D

D FG

BE

H

E CFG

I

H

H

I

GFICD

Runtime? O(V + 2E) = O(V + E) “graph linear”

How many times do you visit each node?
How many times do you traverse each edge?

1 time each

Max 2 times each
- Putting them into toVisit
- Checking if they’re in toVisit



Dijkstra’s Algorithm
Dijkstra(Graph G, Vertex source) 

initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}
s tv

w
u

1

20

1

1 1

x
1

Vertex Distance Predecessor Processed
s 0 -- Yes
w 1 s Yes
x 2 w Yes
u 20 3 s x Yes
v 4 u Yes
t 5 v Yes

CSE 37318 SU – ROBBIE WEBBER



Dijkstra’s Runtime
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Dijkstra(Graph G, Vertex source) 

for (Vertex v : G.getVertices()) { v.dist = INFINITY; }

G.getVertex(source).dist = 0;

initialize MPQ as a Min Priority Queue, add source

while(MPQ is not empty){

u = MPQ.removeMin();

for (Edge e : u.getEdges(u)){

oldDist = v.dist; newDist = u.dist+weight(u,v) 

if(newDist < oldDist){

v.dist = newDist

v.predecessor = u          

if(oldDist == INFINITY) { MPQ.insert(v) }

else { MPQ.updatePriority(v, newDist) }

}

}

}

+V

+C1

+logV

+logV
+?

+V
+E of 1 V

+C2

Code Model = C1 + V + V(logV + E(C2 + 2logV))
= C1 + V + VlogV + VEC2 + VEC3logV

O Bound = O(VElogV)

This actually doesn’t run all E times

– for every iteration of the outer 

loop. It actually will run E times in 

total; if every vertex is only 

removed from the priority queue 

(processed) once, then we will 

examine each edge once. So each 

line inside this foreach gets 

multiplied by a single E instead of E 

* V.

Tight O Bound = O(VlogV + ElogV)(assume logV)



How Do We Find a Topological Ordering?
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TopologicalSort(Graph G, Vertex source) 
count how many incoming edges each vertex has
Collection toProcess = new Collection()
foreach(Vertex v in G){

if(v.edgesRemaining == 0)
toProcess.insert(v)

}
topOrder = new List() 
while(toProcess is not empty){

u = toProcess.remove()
topOrder.insert(u)
foreach(edge (u,v) leaving u){

v.edgesRemaining--
if(v.edgesRemaining == 0)

toProcess.insert(v)
}

}

Math 126

CSE 142

CSE 143

CSE 373

CSE 374

CSE 417

Math 126 CSE 142 CSE 143 CSE 373 CSE 374 CSE 417



How Do We Find a Topological Ordering?
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TopologicalSort(Graph G, Vertex source) 
count how many incoming edges each vertex has
Collection toProcess = new Collection()
foreach(Vertex v in G){

if(v.edgesRemaining == 0)
toProcess.insert(v)

}
topOrder = new List() 
while(toProcess is not empty){

u = toProcess.remove()
topOrder.insert(u)
foreach(edge (u,v) leaving u){

v.edgesRemaining--
if(v.edgesRemaining == 0)

toProcess.insert(v)
}

}

BFS
Graph linear
+ V + EPick something with

O(1) insert / removal

+V

Runs as most once per edge
+E

O(V + E)



Practice 
What is a possible ordering of the graph after a topological sort?
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All possible orderings:
e, d, b, c, f, a
e, b, d, c, f, a
e, b, c, d, f, a
e, b, c, f, a



Try it Out
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A

B

D F

E

C

50

6

3

4

7

2

8

9
5

7

Vertex Distance Best Edge Processed
A
B
C
D
E
F
G

G

2

-

2
4

7

(A, B)
(A, C)
(A, D)

X ✓
✓

3

50

6

(B, F) ✓
(B, E)

(B, G)

PrimMST(Graph G) 
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
foreach(edge (source, v) ) {

v.dist = weight(source,v)
v.bestEdge = (source,v)

}
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
add u.bestEdge to spanning tree
foreach(edge (u,v) leaving u){

if(weight(u,v) < v.dist && v unprocessed ){
v.dist = weight(u,v)
v.bestEdge = (u,v)

}
}
mark u as processed

}

✓
---2
---5

--------(C, D)
--------(C, E)

✓
✓

✓



Try It Out

A

B

D F

E

C

3 6
2

1

4
5

8

9
10

7

KruskalMST(Graph G) 
initialize each vertex to be an independent component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
}

Edge Include? Reason
(A,C) Yes
(C,E) Yes
(A,B) Yes
(A,D) Yes
(C,D) No Cycle A,C,D,A

Edge (cont.) Inc? Reason
(B,F) Yes
(D,E) No Cycle A,C,E,D,A
(D,F) No Cycle A,D,F,B,A
(E,F) No Cycle A,C,E,F,D,A
(C,F) No Cycle C,A,B,F,C



Kruskal’s Algorithm Implementation
KruskalMST(Graph G) 

initialize each vertex to be an independent component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
update u and v to be in the same component

}
}

KruskalMST(Graph G) 
foreach (V : vertices) {

makeMST(v);
}
sort edges in ascending order by weight
foreach(edge (u, v)){

if(findMST(v) is not in findMST(u)){
union(u, v)

}
}

+V(makeMST)

+ElogE

+E(2findMST + union)+?
+?

+?

How many times will we call union?
V – 1
-> +Vunion + EfindMST



Strongly Connected Components

Note: the direction of the edges matters!

CSE 373 SP 18 - KASEY CHAMPION 32

A subgraph C such that every pair of vertices in C is connected via 
some path in both directions, and there is no other vertex which is 
connected to every vertex of C in both directions.

Strongly Connected Component

D

B C

A E



Why Find SCCs?
Graphs are useful because they encode relationships between arbitrary objects.

We’ve found the strongly connected components of G.

Let’s build a new graph out of them! Call it H
- Have a vertex for each of the strongly connected components
- Add an edge from component 1 to component 2 if there is an edge from a vertex inside 1 to one inside 2.
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D

C F

B EA K

J

1

3 4

2



Implement makeSet(x)

Worst case runtime?

O(1) 
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TreeDisjointSet<E>

makeSet(x)-create a new tree 
of size 1 and add to our 
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x 
and moves up tree to find root
union(x, y)-append tree with y 
as a child of tree with x 

Dictionary<NodeValues, 
NodeLocations> nodeInventory

0 1 2 3 4 5

forest

0 1 2 3 4 5

makeSet(0)

makeSet(1)

makeSet(2)

makeSet(3)

makeSet(4)

makeSet(5)



Implement findSet(x)
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findSet(0)

findSet(3)

findSet(5)

0 2

3

4

5

forest

0 1 2 3 4 5

1

TreeDisjointSet<E>

makeSet(x)-create a new tree 
of size 1 and add to our 
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x 
and moves up tree to find root
union(x, y)-append tree with y 
as a child of tree with x 

Dictionary<NodeValues, 
NodeLocations> nodeInventory

Worst case runtime?

O(n) 

Worst case runtime of union?

O(n)



Implement union(x, y)
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union(3, 5)

union(2, 1)

union(2, 5)

0 2 3 4

5

forest

0 1 2 3 4 5
-> -> -> -> -> ->

TreeDisjointSet<E>

makeSet(x)-create a new tree 
of size 1 and add to our 
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x 
and moves up tree to find root
union(x, y)-append tree with y 
as a child of tree with x 

Dictionary<NodeValues, 
NodeLocations> nodeInventory

1



Improving union

Problem: Trees can be unbalanced

Solution: Union-by-rank!

- let rank(x) be a number representing the upper bound of the height of x so rank(x) >= height(x)

- Keep track of rank of all trees

- When unioning make the tree with larger rank the root

- If it’s a tie, pick one randomly and increase rank by one
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2

3

5

1

4

rank = 0 rank = 2

0 4

rank = 0 rank = 0rank = 1



Improving findSet()
Problem: Every time we call findSet() you must traverse all the levels of the tree to find 
representative

Solution: Path Compression
- Collapse tree into fewer levels by updating parent pointer of each node you visit
- Whenever you call findSet() update each node you touch’s parent pointer to point directly to overallRoot
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8

10

12

9 1
1

6

4

5

3 2

7

13

rank = 3

findSet(5)
findSet(4)

8

10

12

9 1
1

645

3 2

7

13

rank = 3

Does this improve the 
worst case runtimes?
findSet is more likely to 
be O(1) than O(log(n))



Array Implementation
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1

6

3

rank = 0

4

2

105 7

0

98

11

15

13

rank = 3

14

12

1716

18

rank = 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Store (rank * -1) - 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
-1 -4 1 2 2 2 1 6 7 7 7 -4 11 12 12 11 15 15 17

Each “node” now only takes 4 bytes of memory instead of 32



Optimized Disjoint Set Runtime
makeSet(x)
Without Optimizations

With Optimizations

findSet(x)
Without Optimizations

With Optimizations

union(x, y)
Without Optimizations

With Optimizations
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O(1)

O(1)

O(n)

O(n)

Best case: O(1) Worst case: O(logn)

Best case: O(1) Worst case: O(logn)



Scenario #1

You are going to Disneyland for spring break! 
You’ve never been, so you want to make sure 
you hit ALL the rides.

Is there a graph algorithm that would help?

BFS or DFS

How would you draw the graph?
- What are the vertices? 

Rides

- What are the edges? 

Walkways
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Scenario #1 continued
Now that you have your basic graph of Disneyland 
what might the following graph items represent in 
this context?
Weighted edges
- Walkway distances
- Walking times
- Foot traffic

Directed edges
- Entrances and exits
- Crowd control for fireworks
- Parade routes

Self Loops
- Looping a ride

Parallel Edges
- Foot traffic at different times of day
- Walkways and train routes
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Scenario #2
You are a Disneyland employee and you need 
to rope off as many miles of walkways as you 
can for the fireworks while leaving guests 
access to all the rides.

Is there a graph algorithm that would help?

MST

How would you draw the graph?
- What are the vertices? 
Rides
- What are the edges? 
Walkways with distances
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Scenario #3
You arrive at Disneyland and you want to visit all the 
rides, but do the least amount of walking possible. If 
you start at the Flag Pole, plan the shortest walk to 
each of the attractions.

Is there a graph algorithm that would help?

Dijkstra’s

How would you draw the graph?
- What are the vertices? 
Rides
- What are the edges? 
Walkways with distances
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Scenario #2b
Now that you know the shortest distance to each 
attraction, can you make a plan to visit all the 
attractions with the least amount of total walking?
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Nope! This is the travelling salesman 
problem which is much more complicated 
than Dijkstra’s. 
(NP Hard, more on this later)
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Scenario #3
You have great taste so you are riding Space 
Mountain. Your friend makes poor choices so they 
are riding Splash Mountain. You decide to meet at 
the castle, how long before you can meet up?
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14Is there a graph algorithm that would help?
Dijkstra’s
What information do our edges need to 
store?
Walking times
How do we apply the algorithm?

- Run Dijkstra’s from Splash Mountain.
- Run Dijkstra’s from Space Mountain.
- Take the larger of the two times.



Types of Problems

Decision Problem – any arbitrary yes-or-no question on an infinite set of inputs. Resolution to 
problem can be represented by a Boolean value.
- IS-PRIME: is X a prime number? (where X is some input)
- IS-SORTED: is this list of numbers sorted?
- EQUAL: is X equal to Y? (for however X and Y define equality)

Solvable – a decision problem is solvable if there exists some algorithm that given any input or 
instance can correctly produce either a “yes” or “no” answer.

- Not all problems are solvable! 
- Example: Halting problem

Efficient algorithm – an algorithm is efficient if the worst case bound is a polynomial. The growth 
rate of this is such that you can actually run it on a computer in practice.

- Definitely efficient: O(1), O(n), O(nlogn), O(n2)

- Technically efficient: O(n1000000), O(10000000000000n2)

Everything we’ve talked about in class so far has been solvable and efficient…
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Weighted Graphs: A Reduction
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P

The set of all decision problems that have an algorithm that runs in 
time ! "# for some constant $.

P (stands for “Polynomial”)

The decision version of all problems we’ve solved in this class are in P.

P is an example of a “complexity class”
A set of problems that can be solved under some limitations (e.g. with 
some amount of memory or in some amount of time).
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I’ll know it when I see it.
More formally,

It’s a common misconception that NP stands for “not polynomial”
Please never ever ever ever say that.
Please.

Every time you do a theoretical computer scientist sheds a single tear. 
(That theoretical computer scientist is me)

The set of all decision problems such that if the answer is YES, there 
is a proof of that which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)
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Homework 2 Data Structures

Function Best 
Case 
Runtime

Average 
Runtime

Worst 
Case 
Runtime

add(T item) O(1) O(1) O(1)

T remove() O(1) O(1) O(1)

T get(int index) O(1) O(n) O(n)

set(int index, T item) O(1) O(n) O(n)

insert(int index, T item) O(1) O(n) O(n)

T delete(int index) O(1) O(n) O(n)

int indexOf(T item) O(1) O(n) O(n)
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DoubleLinkedList

Function Best Case 
Runtime

Average 
Runtime

Worst 
Case 
Runtime

V get(K key) O(1) O(n) O(n)

put(K key, V value) O(1) O(n) O(n)

V remove(K key) O(1) O(n) O(n)

boolean containsKey(K Key) O(1) O(n) O(n)

ArrayDictionary
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Homework 4 Data Structures

Function Best Case 
Runtime

Average 
Runtime

Worst Case 
Runtime

add(T item) O(1) O(λ) O(n)

remove(T item) O(1) O(λ) O(n)

boolean contains(T item) O(1) O(λ) O(n)
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ChainedHashSet

ChainedHashDictionary
Function Best Case 

Runtime
Average 
Runtime

Worst Case 
Runtime

V get(K key) O(1) O(λ) O(n)

put(K key, V value) O(1) O(λ) O(n)

V remove(K key) O(1) O(λ) O(n)

boolean containsKey(K Key) O(1) O(λ) O(n)

CSE 373 19 SP - KASEY CHAMPION



Homework 5 Data Structures

Function Best Case 
Runtime

Average 
Runtime

Worst Case 
Runtime

T removeMin() O(1) O(logn) O(logn)

T peekMin() O(1) O(1) O(1)

add(T item) O(1) O(logn) O(n)

boolean contains(T item) O(1) O(1) O(1)

remove(T item) O(1) O(logn) O(logn)

replace(T oldItem, T newItem) O(1) O(logn) O(logn)
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ArrayHeap
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Homework 7 Data Structures

Function Best Case Runtime Average Runtime Worst Case Runtime
makeSet(T item) O(1) O(1) O(n)
int findSet(T item) O(1) O(1) O(logn)
union(T item1, T item2) O(1) O(1) O(logn)
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ArrayDisjointSet

Graph

Function Best Case Runtime Average Runtime Worst Case Runtime
int numVertices() O(1) O(1) O(1)
int numEdges() O(1) O(1) O(1)
ISet<E> findMinimumSpanningTree() O(ElogE) O(ElogE) O(ElogE)
IList<E> findShortestPathBetween(V 
start, V end)

O(1) you don’t need 
to know this

O(VlogV + ElogV)
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What to test?
Expected behavior

- The main use case scenario
- Does your code do what it should given friendly conditions?

Forbidden Input
- What are all the ways the user can mess up?

Empty/Null
- Protect yourself!
- How do things get started?
- 0, -1, null, empty collections

Boundary/Edge Cases
- First items
- Last item
- Full collections

Scale
- Is there a difference between 10, 100, 1000, 10000 items?
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