
Lecture 30: Final Review CSE 373: Data Structures and
Algorithms

CSE 373 19 SP - KASEY CHAMPION 1

Administriva
HW 7 due tonight

Fill out surveys for 5 points of EC!
- Lecture survey
- Section survey
- Our survey

Nominate your Tas for Bob Bandes Award

CSE 373 SP 18 - KASEY CHAMPION 2

After 373…
Get a job
- Prepare for interviews
- Attend CSE career fair in October

Get more coding practice
- Husky Code Student Project (email Kasey)
- Hackathons
- Research
- Open source projects

Become a TA
- Email Pim Lustig, pl@cs.washington.edu

Take more classes
- CSE 417 – more algorithms
- CSE 154 – web programming
- CSE 163 – python libraries for data science
- CSE 374 – C programming and unix

CSE 373 19 SP - KASEY CHAMPION 3

mailto:pl@cs.washington.edu

On the exam

Graphs
- Graph definitions
- Graph implementations
- Graph algorithms

- Traversals: BFS and DFS
- Shortest-path: Dijkstra's algorithm
- Topological sort
- MST algorithms: Prim and Kruskal
- Disjoint set data structure CSE 373 19 SP - KASEY CHAMPION 4

P vs NP
- Definitions of P, NP and NP Complete
- Understand what a reduction is

Design Decisions
- Given a scenario, what ADT, data structure implementation and/or algorithm is best

optimized for your goals?
- What is unique or specialized about your chosen tool?
- Given a scenario, how does your selection’s unique features contribute to a solution?
- What is the runtime and memory usage of your selection?

- Given a scenario, what changes might you make to a design to better serve your goals?

NOT on the exam
- Finding close form of recurrences with tree method
- writing Java generics and Java interfaces
- writing JUnit
- writing Java syntax

Sorting
- Quadratic sorts: insertion sort, selection sort
- Faster sorts: heap sort, merge sort, quick sort
- Runtimes of all of the above (in the best and worst case)

Memory and Locality
- How to leverage caching

Midterm Topics
- ADTs + data structures
- Asymptotic Analysis

- Code Modeling (including recurrences)
- Complexity Classes
- Big O, Big Omega and Big Theta

- BST & AVL trees
- Hashing

Heaps
- Internal state of tree
- Array implementation

Coding Projects
- Implementation of each data structure
- Best / Average / Worst case runtime of each data structure
- Testing strategies, debugging strategies

ADTs and Data Structures you’re responsible for

List
- Maintains order of elements

- Flexibility of item manipulation

- Useful in many situations

Stack
- First in last out ordering

Queue
- First in first out ordering

Set
- Unordered collection of unique elements

- Often used to test membership (contains)

Dictionary
- Collection of key value pairs

- Does not maintain order of elements

Tree
- Ordered hierarchy of elements

- Often used for traversals

Iterator
- Dictates specific order in which to move through elements in a collection

- Allows for a single pass through collection in one direction

Priority Queue
- Highest priority first out

Disjoint Set
- Set of sets
- Provides near constant time operations

CSE 373 19 SP - KASEY CHAMPION 5

Array
- Set capacity upon creation
- Each element has associated index for quick access
- Leverages caching
Linked Nodes
- Set of objects strung together by references
- Very flexible
- Requires traversals for access
Binary Search Tree
- Specific ordering of elements: left child < parent < right child
- Allows for quicker traversals
- Simple implementation
AVL Trees
- Same ordering as BST but self-balances to maintain optimal

height for runtime
- Complex implementation
Hash table
- Optimized for close to constant time look up and insertion

- Optimality dictated by hash function and collision strategy
Heap
- Specific ordering: parent < children
- Fills from left to right to maintain optimal height

For each of the listed
algorithms make sure
you understand:

In what situations it is
useful
- What behavior does the ADT

actually allow?
- What is unique about this

ADT?

What are the different
data structure
implementation options
for this ADT and how
does that impact
- Ease of implementation
- Runtime
- Memory usage

ADTs Data Structures

Algorithms you’re responsible for
Heaps
- percolateUp
- percolateDown
- Floyd’s Build Heap

Sorting
- Insertion
- Selection
- Merge
- Quick
- Heap

CSE 373 19 SP - KASEY CHAMPION 6

Graphs
- Breadth First Search (BFS)
- Depth First Search (DFS)
- Dijkstra’s
- Topological Sort
- Prim’s MST
- Kruskal’s MST

Disjoint Sets
- Union by rank
- Path compression

For each of the listed
algorithms make sure
you understand:

In what situations it is
useful
- What will this tell us about

the data
- What state should the data

be in to use it?

The pros and cons of the
algorithm in terms of
- Runtime – best, average and

worst
- Memory usage

Insertion Sort

CSE 373 SP 18 - KASEY CHAMPION 7

0 1 2 3 4 5 6 7 8 9
2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted ItemsCurrent Item

public void insertionSort(collection) {
for (entire list)

if(currentItem is bigger than nextItem)
int newIndex = findSpot(currentItem);
shift(newIndex, currentItem);

}
public int findSpot(currentItem) {

for (sorted list)
if (spot found) return

}
public void shift(newIndex, currentItem) {

for (i = currentItem > newIndex)
item[i+1] = item[i]

item[newIndex] = currentItem
}

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

O(n2)

O(n)

Yes

Yes

O(n2)

Selection Sort

CSE 373 SP 18 - KASEY CHAMPION 8

public void selectionSort(collection) {
for (entire list)

int newIndex = findNextMin(currentItem);
swap(newIndex, currentItem);

}
public int findNextMin(currentItem) {

min = currentItem
for (unsorted list)

if (item < min)
min = currentItem

return min
}
public int swap(newIndex, currentItem) {

temp = currentItem
currentItem = newIndex
newIndex = currentItem

}

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

O(n2)

O(n2)

No

Yes

O(n2)

0 1 2 3 4 5 6 7 8 9
2 3 6 7 18 10 14 9 11 15

Sorted Items Unsorted ItemsCurrent Item

In Place Heap Sort

CSE 373 SP 18 - KASEY CHAMPION 9

public void inPlaceHeapSort(collection) {
E[] heap = buildHeap(collection)
for (n)

output[n – i - 1] = removeMin(heap)
}

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

O(nlogn)

O(nlogn)

No

Yes

O(nlogn)

0 1 2 3 4 5 6 7 8 9

15 17 16 18 20 22 14 4 2 1

Heap Sorted Items
Current Item

Complication: final array is reversed!
- Run reverse afterwards (O(n))
- Use a max heap
- Reverse compare function to emulate max heap

Merge Sort

CSE 373 SP 18 - KASEY CHAMPION 10

mergeSort(input) {
if (input.length == 1)

return
else

smallerHalf = mergeSort(new [0, ..., mid])
largerHalf = mergeSort(new [mid + 1, ...])
return merge(smallerHalf, largerHalf)

}

0 1 2 3 4
8 2 57 91 22

0 1
8 2

0 1 2
57 91 22

0
8

0
2

0
57

0 1
91 22

0
91

0
22

0 1
22 91

0 1 2
22 57 91

0 1
2 8

0 1 2 3 4
2 8 22 57 91

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

1 if n<= 1
2T(n/2) + n otherwise

Yes

No

T(n) =

= O(nlogn)

Quick Sort

CSE 373 SP 18 - KASEY CHAMPION 11

0 1 2 3 4 5 6

20 50 70 10 60 40 30

0 1 2 3 4

50 70 60 40 30

0

10

0 1

40 30

0 1

70 60

0

30

0

60

0 1

30 40

0 1

60 70

0 1 2 3 4

30 40 50 60 70

0 1 2 3 4 5 6

10 20 30 40 50 60 70

quickSort(input) {
if (input.length == 1)

return
else

pivot = getPivot(input)
smallerHalf = quickSort(getSmaller(pivot, input))
largerHalf = quickSort(getBigger(pivot, input))
return smallerHalf + pivot + largerHalf

}

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

1 if n<= 1

n + T(n - 1) otherwise
T(n) =

1 if n<= 1

n + 2T(n/2) otherwise
T(n) =

No

No

=O(n2)

=O(nlogn)

Better Quick Sort

CSE 373 SP 18 - KASEY CHAMPION 12

0 1 2 3 4 5 6 7 8 9

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

6 1 4 9 0 3 5 2 7 8

Low
X < 6

High
X >= 6

0 1 2 3 4 5 6 7 8 9

6 1 4 2 0 3 5 9 7 8

Low
X < 6

High
X >= 6

Compare three elements: leftmost, rightmost and center
Swap elements if necessary so that
Arr[0] = smallest
Arr[center] = median of three

Better Quick Sort

CSE 373 SP 18 - KASEY CHAMPION 13

quickSort(input) {
if (input.length == 1)

return
else

pivot = getPivot(input)
smallerHalf = quickSort(getSmaller(pivot, input))
largerHalf = quickSort(getBigger(pivot, input))
return smallerHalf + pivot + largerHalf

}

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

1 if n<= 1
n + 2T(n/2) otherwiseT(n) =

No

Yes

0 1 2 3 4 5 6 7 8 9
6 1 4 2 0 3 5 9 7 8

=O(nlogn)

Graph: Formal Definition
A graph is defined by a pair of sets G = (V, E) where…
- V is a set of vertices

- A vertex or “node” is a data entity

- E is a set of edges
- An edge is a connection between two vertices

CSE 373 SP 18 - KASEY CHAMPION 14

A

B

CD

E

F

G

H

V = { A, B, C, D, E, F, G, H }

E = { (A, B), (A, C), (A, D), (A, H),
(C, B), (B, D), (D, E), (D, F),
(F, G), (G, H)}

Graph Vocabulary
Graph Direction
- Undirected graph – edges have no direction and are two-way

- Directed graphs – edges have direction and are thus one-way

Degree of a Vertex
- Degree – the number of edges containing that vertex

for undirected graph: A : 1, B : 2, C : 1
- In-degree – the number of directed edges that point to a vertex

A : 0, B : 2, C : 1
- Out-degree – the number of directed edges that start at a vertex

A : 1, B : 1, C : 1
CSE 373 SP 18 - KASEY CHAMPION 15

A B

C

V = { A, B, C }
E = { (A, B), (B, C) } inferred (B, A) and (C,B)

V = { A, B, C }
E = { (A, B), (B, C), (C, B) } A

B

C

Undirected Graph:

Directed Graph:

Graph Vocabulary
Self loop – an edge that starts and ends at the same vertex

Parallel edges – two edges with the same start and end vertices

Simple graph – a graph with no self-loops and no parallel edges

CSE 373 SP 18 - KASEY CHAMPION 16

Dany Drogo

Petyr

Margaery Renly

Loras

Brienne

Adjacency Matrix
A B C D

A T T

B

C T T

D T

CSE 373 SP 18 - KASEY CHAMPION 17

Assign each vertex a number from 0 to V – 1

Create a V x V array of Booleans

If (x,y) ∈ E then arr[x][y] = true

Runtime (in terms of V and E)
- get out - edges for a vertex O(v)

- get in – edges for a vertex O(v)

- decide if an edge exists O(1)

- insert an edge O(1)

- delete an edge O(1)

- delete a vertex

- add a vertex

How much space is used?

V2

A

B

C

D

Graph Vocabulary
Dense Graph – a graph with a lot of edges

E ∈ Θ(V2)

Sparse Graph – a graph with “few” edges

E ∈ Θ(V)

An Adjacency Matrix seems a waste for a sparse graph…

CSE 373 SP 18 - KASEY CHAMPION 18

Stark Lannister

TyrellsTargaryens

Jon
Sam

Yoren

Pyp

Eddison

Create a Dictionary of size V from type V to Collection of E
If (x,y) ∈ E then add y to the set associated with the key x

Runtime (in terms of V and E)
- get out - edges for a vertex O(1)
- get in - edges for a vertex O(V + E)
- decide if an edge exists O(1)
- insert an edge O(1)
- delete an edge O(1)
- delete a vertex
- add a vertex

How much space is used?
V + E

Adjacency List

CSE 373 SP 18 - KASEY CHAMPION 19

0

1

2

3

A

B

C

D

A

B

C

D

B C

B D

A

Walks and Paths
Walk – continuous set of edges leading from vertex to vertex

A list of vertices where if I is some int where 0 < 1 < Vn every pair (Vi, Vi+1) in E is true

Path – a walk that never visits the same vertex twice

CSE 373 SP 18 - KASEY CHAMPION 20

Winterfell

Castle
Black

King’s
Landing

Casterly
Rock

Winterfell

Castle
Black

King’s
Landing

Casterly
Rock

Connected Graphs
Connected graph – a graph where every vertex is
connected to every other vertex via some path. It
is not required for every vertex to have an edge to
every other vertex

There exists some way to get from each vertex to
every other vertex

CSE 373 SP 18 - KASEY CHAMPION 21

Sansa

Robb

Bran

Arya

Rickon

Jon

Dany

Connected Component – a subgraph in
which any two vertices are connected via
some path, but is connected to no
additional vertices in the supergraph
- There exists some way to get from each vertex

within the connected component to every other
vertex in the connected component

- A vertex with no edges is itself a connected
component

Viserys

Breadth First Search

Current node:

Queue:

Visited:

CSE 373 SP 18 - KASEY CHAMPION 22

F

B

C

D
A

E

G

H

I

J

A B

A

B E C

D

D F G

BDE

H

E

C

C

F

F

G

G

I

G

H

HI

I

search(graph)
toVisit.enqueue(first vertex)
while(toVisit is not empty)

current = toVisit.dequeue()
for (V : current.neighbors())

if (V is not in queue)
toVisit.enqueue(v)

visited.add(current)

Depth First Search

CSE 373 SP 18 - KASEY CHAMPION 23

F

B

C

D
A

E

G

H

I

J

dfs(graph)
toVisit.push(first vertex)
while(toVisit is not empty)

current = toVisit.pop()
for (V : current.neighbors())

if (V is not in stack)
toVisit.push(v)

visited.add(current)

Current node:

Stack:

Visited: A B

A

B EC

D

D FG

BE

H

E CFG

I

H

H

I

GFICD

Runtime? O(V + 2E) = O(V + E) “graph linear”

How many times do you visit each node?
How many times do you traverse each edge?

1 time each

Max 2 times each
- Putting them into toVisit
- Checking if they’re in toVisit

Dijkstra’s Algorithm
Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}
s tv

w
u

1

20

1

1 1

x
1

Vertex Distance Predecessor Processed
s 0 -- Yes
w 1 s Yes
x 2 w Yes
u 20 3 s x Yes
v 4 u Yes
t 5 v Yes

CSE 37318 SU – ROBBIE WEBBER

Dijkstra’s Runtime

CSE 373 19 WI - KASEY CHAMPION 25

Dijkstra(Graph G, Vertex source)

for (Vertex v : G.getVertices()) { v.dist = INFINITY; }

G.getVertex(source).dist = 0;

initialize MPQ as a Min Priority Queue, add source

while(MPQ is not empty){

u = MPQ.removeMin();

for (Edge e : u.getEdges(u)){

oldDist = v.dist; newDist = u.dist+weight(u,v)

if(newDist < oldDist){

v.dist = newDist

v.predecessor = u

if(oldDist == INFINITY) { MPQ.insert(v) }

else { MPQ.updatePriority(v, newDist) }

}

}

}

+V

+C1

+logV

+logV
+?

+V
+E of 1 V

+C2

Code Model = C1 + V + V(logV + E(C2 + 2logV))
= C1 + V + VlogV + VEC2 + VEC3logV

O Bound = O(VElogV)

This actually doesn’t run all E times

– for every iteration of the outer

loop. It actually will run E times in

total; if every vertex is only

removed from the priority queue

(processed) once, then we will

examine each edge once. So each

line inside this foreach gets

multiplied by a single E instead of E

* V.

Tight O Bound = O(VlogV + ElogV)(assume logV)

How Do We Find a Topological Ordering?

CSE 373 SP 18 - KASEY CHAMPION 26

TopologicalSort(Graph G, Vertex source)
count how many incoming edges each vertex has
Collection toProcess = new Collection()
foreach(Vertex v in G){

if(v.edgesRemaining == 0)
toProcess.insert(v)

}
topOrder = new List()
while(toProcess is not empty){

u = toProcess.remove()
topOrder.insert(u)
foreach(edge (u,v) leaving u){

v.edgesRemaining--
if(v.edgesRemaining == 0)

toProcess.insert(v)
}

}

Math 126

CSE 142

CSE 143

CSE 373

CSE 374

CSE 417

Math 126 CSE 142 CSE 143 CSE 373 CSE 374 CSE 417

How Do We Find a Topological Ordering?

CSE 373 19 WI - KASEY CHAMPION 27

TopologicalSort(Graph G, Vertex source)
count how many incoming edges each vertex has
Collection toProcess = new Collection()
foreach(Vertex v in G){

if(v.edgesRemaining == 0)
toProcess.insert(v)

}
topOrder = new List()
while(toProcess is not empty){

u = toProcess.remove()
topOrder.insert(u)
foreach(edge (u,v) leaving u){

v.edgesRemaining--
if(v.edgesRemaining == 0)

toProcess.insert(v)
}

}

BFS
Graph linear
+ V + EPick something with

O(1) insert / removal

+V

Runs as most once per edge
+E

O(V + E)

Practice
What is a possible ordering of the graph after a topological sort?

CSE 373 SP 18 - KASEY CHAMPION 28

All possible orderings:
e, d, b, c, f, a
e, b, d, c, f, a
e, b, c, d, f, a
e, b, c, f, a

Try it Out

CSE 373 SP 18 - KASEY CHAMPION 29

A

B

D F

E

C

50

6

3

4

7

2

8

9
5

7

Vertex Distance Best Edge Processed
A
B
C
D
E
F
G

G

2

-

2
4

7

(A, B)
(A, C)
(A, D)

X ✓
✓

3

50

6

(B, F) ✓
(B, E)

(B, G)

PrimMST(Graph G)
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
foreach(edge (source, v)) {

v.dist = weight(source,v)
v.bestEdge = (source,v)

}
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
add u.bestEdge to spanning tree
foreach(edge (u,v) leaving u){

if(weight(u,v) < v.dist && v unprocessed){
v.dist = weight(u,v)
v.bestEdge = (u,v)

}
}
mark u as processed

}

✓
---2
---5

--------(C, D)
--------(C, E)

✓
✓

✓

Try It Out

A

B

D F

E

C

3 6
2

1

4
5

8

9
10

7

KruskalMST(Graph G)
initialize each vertex to be an independent component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
}

Edge Include? Reason
(A,C) Yes
(C,E) Yes
(A,B) Yes
(A,D) Yes
(C,D) No Cycle A,C,D,A

Edge (cont.) Inc? Reason
(B,F) Yes
(D,E) No Cycle A,C,E,D,A
(D,F) No Cycle A,D,F,B,A
(E,F) No Cycle A,C,E,F,D,A
(C,F) No Cycle C,A,B,F,C

Kruskal’s Algorithm Implementation
KruskalMST(Graph G)

initialize each vertex to be an independent component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
update u and v to be in the same component

}
}

KruskalMST(Graph G)
foreach (V : vertices) {

makeMST(v);
}
sort edges in ascending order by weight
foreach(edge (u, v)){

if(findMST(v) is not in findMST(u)){
union(u, v)

}
}

+V(makeMST)

+ElogE

+E(2findMST + union)+?
+?

+?

How many times will we call union?
V – 1
-> +Vunion + EfindMST

Strongly Connected Components

Note: the direction of the edges matters!

CSE 373 SP 18 - KASEY CHAMPION 32

A subgraph C such that every pair of vertices in C is connected via
some path in both directions, and there is no other vertex which is
connected to every vertex of C in both directions.

Strongly Connected Component

D

B C

A E

Why Find SCCs?
Graphs are useful because they encode relationships between arbitrary objects.

We’ve found the strongly connected components of G.

Let’s build a new graph out of them! Call it H
- Have a vertex for each of the strongly connected components
- Add an edge from component 1 to component 2 if there is an edge from a vertex inside 1 to one inside 2.

CSE 373 SP 18 - KASEY CHAMPION 33

D

C F

B EA K

J

1

3 4

2

Implement makeSet(x)

Worst case runtime?

O(1)
CSE 373 SP 18 - KASEY CHAMPION 34

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root
union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

0 1 2 3 4 5

forest

0 1 2 3 4 5

makeSet(0)

makeSet(1)

makeSet(2)

makeSet(3)

makeSet(4)

makeSet(5)

Implement findSet(x)

CSE 373 SP 18 - KASEY CHAMPION 35

findSet(0)

findSet(3)

findSet(5)

0 2

3

4

5

forest

0 1 2 3 4 5

1

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root
union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

Worst case runtime?

O(n)

Worst case runtime of union?

O(n)

Implement union(x, y)

CSE 373 SP 18 - KASEY CHAMPION 36

union(3, 5)

union(2, 1)

union(2, 5)

0 2 3 4

5

forest

0 1 2 3 4 5
-> -> -> -> -> ->

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root
union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

1

Improving union

Problem: Trees can be unbalanced

Solution: Union-by-rank!

- let rank(x) be a number representing the upper bound of the height of x so rank(x) >= height(x)

- Keep track of rank of all trees

- When unioning make the tree with larger rank the root

- If it’s a tie, pick one randomly and increase rank by one

CSE 373 SP 18 - KASEY CHAMPION 37

2

3

5

1

4

rank = 0 rank = 2

0 4

rank = 0 rank = 0rank = 1

Improving findSet()
Problem: Every time we call findSet() you must traverse all the levels of the tree to find
representative

Solution: Path Compression
- Collapse tree into fewer levels by updating parent pointer of each node you visit
- Whenever you call findSet() update each node you touch’s parent pointer to point directly to overallRoot

CSE 373 SP 18 - KASEY CHAMPION 38

8

10

12

9 1
1

6

4

5

3 2

7

13

rank = 3

findSet(5)
findSet(4)

8

10

12

9 1
1

645

3 2

7

13

rank = 3

Does this improve the
worst case runtimes?
findSet is more likely to
be O(1) than O(log(n))

Array Implementation

CSE 373 SP 18 - KASEY CHAMPION 39

1

6

3

rank = 0

4

2

105 7

0

98

11

15

13

rank = 3

14

12

1716

18

rank = 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Store (rank * -1) - 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
-1 -4 1 2 2 2 1 6 7 7 7 -4 11 12 12 11 15 15 17

Each “node” now only takes 4 bytes of memory instead of 32

Optimized Disjoint Set Runtime
makeSet(x)
Without Optimizations

With Optimizations

findSet(x)
Without Optimizations

With Optimizations

union(x, y)
Without Optimizations

With Optimizations

CSE 373 SP 18 - KASEY CHAMPION 40

O(1)

O(1)

O(n)

O(n)

Best case: O(1) Worst case: O(logn)

Best case: O(1) Worst case: O(logn)

Scenario #1

You are going to Disneyland for spring break!
You’ve never been, so you want to make sure
you hit ALL the rides.

Is there a graph algorithm that would help?

BFS or DFS

How would you draw the graph?
- What are the vertices?

Rides

- What are the edges?

Walkways

CSE 373 19 WI - KASEY CHAMPION 41

Castle

Flag

Pole

Dumbo

It’s a

small

world

Matter-

horn

Space

Mtn

Star

Tours

Jungle

Cruise

Indiana

Jones

Splash

Mtn

Thunder

Mtn

0

1

2

3

4

5

6 7

8

9

10

BFS = 0 1 2 3 5 6 7 8 9 4 10

DFS = 0 3 5 6 7 8 9 10 1 4 2

Scenario #1 continued
Now that you have your basic graph of Disneyland
what might the following graph items represent in
this context?
Weighted edges
- Walkway distances
- Walking times
- Foot traffic

Directed edges
- Entrances and exits
- Crowd control for fireworks
- Parade routes

Self Loops
- Looping a ride

Parallel Edges
- Foot traffic at different times of day
- Walkways and train routes

CSE 373 19 WI - KASEY CHAMPION 42

Castle

Flag
Pole

Dumbo

It’s a
small
world

Matter-
horn

Space
Mtn

Star
Tours

Jungle
Cruise

Indiana
Jones

Splash
Mtn

Thunder
Mtn

0

1

2

3

4

5

6 7

8

9

10

Scenario #2
You are a Disneyland employee and you need
to rope off as many miles of walkways as you
can for the fireworks while leaving guests
access to all the rides.

Is there a graph algorithm that would help?

MST

How would you draw the graph?
- What are the vertices?
Rides
- What are the edges?
Walkways with distances

CSE 373 SP 18 - KASEY CHAMPION 43

Castle

Flag
Pole

Dumbo

It’s a
small
world

Matter-
horn

Space
Mtn

Star
Tours

Jungle
Cruise

Indiana
Jones

Splash
Mtn

Thunder
Mtn

0

1

2

3

4

5

6 7

8

9

10

11

5

17

13

1210

1

9

6

4

16

7

8

3

2

15

14

Castle

Flag
Pole

Dumbo

It’s a
small
world

Matter-
horn

Space
Mtn

Star
Tours

Jungle
Cruise

Indiana
Jones

Splash
Mtn

Thunder
Mtn

0

1

2

3

4

5

6 7

8

9

10

11

5

17

13

1210

1

9

6

4

16

7

8

3

2

15

14

Scenario #3
You arrive at Disneyland and you want to visit all the
rides, but do the least amount of walking possible. If
you start at the Flag Pole, plan the shortest walk to
each of the attractions.

Is there a graph algorithm that would help?

Dijkstra’s

How would you draw the graph?
- What are the vertices?
Rides
- What are the edges?
Walkways with distances

CSE 373 SP 18 - KASEY CHAMPION 44

Castle

Flag
Pole

Dumbo

It’s a
small
world

Matter-
horn

Space
Mtn

Star
Tours

Jungle
Cruise

Indiana
Jones

Splash
Mtn

Thunder
Mtn

0

1

2

3

4

5

6 7

8

9

10

11

5

17

13

1210

1

9

6

4

16

7

8

3

2

15

14

Castle

Flag
Pole

Dumbo

It’s a
small
world

Matter-
horn

Space
Mtn

Star
Tours

Jungle
Cruise

Indiana
Jones

Splash
Mtn

Thunder
Mtn

0

1

2

3

4

5

6 7

8

9

10

11

5

17

13

1210

1

9

6

4

16

7

8

3

2

15

14

21
23

24

28
29

11

3

5

20

13

Scenario #2b
Now that you know the shortest distance to each
attraction, can you make a plan to visit all the
attractions with the least amount of total walking?

CSE 373 SP 18 - KASEY CHAMPION 45

0

1

2

3

4

5

6 7

8

9

10

11

5

17

13

1210

1

9

6

4

16

7

8

3

2

15

14
Nope! This is the travelling salesman
problem which is much more complicated
than Dijkstra’s.
(NP Hard, more on this later)

Castle

Flag
Pole

Dumbo

It’s a
small
world

Matter-
horn

Space
Mtn

Star
Tours

Jungle
Cruise

Indiana
Jones

Splash
Mtn

Thunder
Mtn

0

1

2

3

4

5

6 7

8

9

10

11

5

17

13

1210

1

9

6

4

16

7

8

3

2

15

14

21
23

24

28
29

11

3

5

20

13

Scenario #3
You have great taste so you are riding Space
Mountain. Your friend makes poor choices so they
are riding Splash Mountain. You decide to meet at
the castle, how long before you can meet up?

CSE 373 SP 18 - KASEY CHAMPION 46

Castle

Flag
Pole

Dumbo

It’s a
small
world

Matter-
horn

Space
Mtn

Star
Tours

Jungle
Cruise

Indiana
Jones

Splash
Mtn

Thunder
Mtn

0

1

2

3

4

5

6 7

8

9

10

11

5

17

13

1210

1

9

6

4

16

7

8

3

2

15

14Is there a graph algorithm that would help?
Dijkstra’s
What information do our edges need to
store?
Walking times
How do we apply the algorithm?

- Run Dijkstra’s from Splash Mountain.
- Run Dijkstra’s from Space Mountain.
- Take the larger of the two times.

Types of Problems

Decision Problem – any arbitrary yes-or-no question on an infinite set of inputs. Resolution to
problem can be represented by a Boolean value.
- IS-PRIME: is X a prime number? (where X is some input)
- IS-SORTED: is this list of numbers sorted?
- EQUAL: is X equal to Y? (for however X and Y define equality)

Solvable – a decision problem is solvable if there exists some algorithm that given any input or
instance can correctly produce either a “yes” or “no” answer.

- Not all problems are solvable!
- Example: Halting problem

Efficient algorithm – an algorithm is efficient if the worst case bound is a polynomial. The growth
rate of this is such that you can actually run it on a computer in practice.

- Definitely efficient: O(1), O(n), O(nlogn), O(n2)

- Technically efficient: O(n1000000), O(10000000000000n2)

Everything we’ve talked about in class so far has been solvable and efficient…

CSE 373 SP 18 - KASEY CHAMPION 47

Weighted Graphs: A Reduction

s

u

v
t2

2

2

1

1

s

u

v

t

s
u

v
t 2

s
u

v
t2

2

2

1

1
2

Transform Input

Unweighted Shortest Paths

Transform Output

CSE 37318 SU – ROBBIE WEBBER

P

The set of all decision problems that have an algorithm that runs in
time ! "# for some constant $.

P (stands for “Polynomial”)

The decision version of all problems we’ve solved in this class are in P.

P is an example of a “complexity class”
A set of problems that can be solved under some limitations (e.g. with
some amount of memory or in some amount of time).

CSE 373 WI19 - KASEY CHAMPION 49

I’ll know it when I see it.
More formally,

It’s a common misconception that NP stands for “not polynomial”
Please never ever ever ever say that.
Please.

Every time you do a theoretical computer scientist sheds a single tear.
(That theoretical computer scientist is me)

The set of all decision problems such that if the answer is YES, there
is a proof of that which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

CSE 373 WI19 - KASEY CHAMPION 50

Homework 2 Data Structures

Function Best
Case
Runtime

Average
Runtime

Worst
Case
Runtime

add(T item) O(1) O(1) O(1)

T remove() O(1) O(1) O(1)

T get(int index) O(1) O(n) O(n)

set(int index, T item) O(1) O(n) O(n)

insert(int index, T item) O(1) O(n) O(n)

T delete(int index) O(1) O(n) O(n)

int indexOf(T item) O(1) O(n) O(n)

51

DoubleLinkedList

Function Best Case
Runtime

Average
Runtime

Worst
Case
Runtime

V get(K key) O(1) O(n) O(n)

put(K key, V value) O(1) O(n) O(n)

V remove(K key) O(1) O(n) O(n)

boolean containsKey(K Key) O(1) O(n) O(n)

ArrayDictionary

CSE 373 19 SP - KASEY CHAMPION

Homework 4 Data Structures

Function Best Case
Runtime

Average
Runtime

Worst Case
Runtime

add(T item) O(1) O(λ) O(n)

remove(T item) O(1) O(λ) O(n)

boolean contains(T item) O(1) O(λ) O(n)

52

ChainedHashSet

ChainedHashDictionary
Function Best Case

Runtime
Average
Runtime

Worst Case
Runtime

V get(K key) O(1) O(λ) O(n)

put(K key, V value) O(1) O(λ) O(n)

V remove(K key) O(1) O(λ) O(n)

boolean containsKey(K Key) O(1) O(λ) O(n)

CSE 373 19 SP - KASEY CHAMPION

Homework 5 Data Structures

Function Best Case
Runtime

Average
Runtime

Worst Case
Runtime

T removeMin() O(1) O(logn) O(logn)

T peekMin() O(1) O(1) O(1)

add(T item) O(1) O(logn) O(n)

boolean contains(T item) O(1) O(1) O(1)

remove(T item) O(1) O(logn) O(logn)

replace(T oldItem, T newItem) O(1) O(logn) O(logn)

53

ArrayHeap

CSE 373 19 SP - KASEY CHAMPION

Homework 7 Data Structures

Function Best Case Runtime Average Runtime Worst Case Runtime
makeSet(T item) O(1) O(1) O(n)
int findSet(T item) O(1) O(1) O(logn)
union(T item1, T item2) O(1) O(1) O(logn)

54

ArrayDisjointSet

Graph

Function Best Case Runtime Average Runtime Worst Case Runtime
int numVertices() O(1) O(1) O(1)
int numEdges() O(1) O(1) O(1)
ISet<E> findMinimumSpanningTree() O(ElogE) O(ElogE) O(ElogE)
IList<E> findShortestPathBetween(V
start, V end)

O(1) you don’t need
to know this

O(VlogV + ElogV)

CSE 373 19 SP - KASEY CHAMPION

What to test?
Expected behavior

- The main use case scenario
- Does your code do what it should given friendly conditions?

Forbidden Input
- What are all the ways the user can mess up?

Empty/Null
- Protect yourself!
- How do things get started?
- 0, -1, null, empty collections

Boundary/Edge Cases
- First items
- Last item
- Full collections

Scale
- Is there a difference between 10, 100, 1000, 10000 items?

55CSE 373 19 SP - KASEY CHAMPION

