
Lecture 29: P vs. NP Data Structures and Algorithms

CSE 373 19 SP - KASEY CHAMPION 1

Administrivia
HW 7 due Friday

Final exam review today 4-5:50 PAA 102

Please fill out surveys (extra credit)

Double check all your grades

CSE 373 WI19 - KASEY CHAMPION 2

Reductions, P vs. NP

CSE 373 SP 18 - KASEY CHAMPION 3

Last Lecture…

The Final Making Problem was a type of “Satisfiability” problem.

We had a bunch of variables (include/exclude this question), and needed to satisfy everything in

a list of requirements.

The algorithm we just made for Final Creation works for any 2-SAT problem.

CSE 373 SP 18 - KASEY CHAMPION 4

Given: A set of Boolean variables, and a list of requirements, each of the form:

variable1==[True/False] || variable2==[True/False]
Find: A setting of variables to “true” and “false” so that all of the requirements

evaluate to “true”

2-Satisfiability (“2-SAT”)

Reductions: Take 2

You already do this all the time.
In Homework 3, you reduced implementing a hashset to implementing a
hashmap.
Any time you use a library, you’re reducing your problem to the one the
library solves.

Using an algorithm for Problem B to solve Problem A.
Reduction (informally)

Weighted Graphs: A Reduction

s

u

v
t2

2

2

1

1

s

u

v

t

s

u

v
t 2

s

u

v
t2

2

2

1

1
2

Transform Input

Unweighted Shortest Paths

Transform Output

CSE 373 SP 18 - KASEY CHAMPION 14

Reductions

It might not be too surprising that we can solve one shortest path problem
with the algorithm for another shortest path problem.
The real power of reductions is that you can sometimes reduce a problem
to another one that looks very very different.
We’re going to reduce a graph problem to 2-SAT.

CSE 373 SP 18 - KASEY CHAMPION 7

Given an undirected, unweighted graph !, color each vertex “red”
or “blue” such that the endpoints of every edge are different colors
(or report no such coloring exists).

2-Coloring

2-Coloring

Can these graphs be 2-colored? If so find a 2-coloring. If not try to explain
why one doesn’t exist.

CSE 373 SP 18 - KASEY CHAMPION 8

B

D
E

A

C B

D
E

A

C

2-Coloring

Can these graphs be 2-colored? If so find a 2-coloring. If not try to explain
why one doesn’t exist.

CSE 373 SP 18 - KASEY CHAMPION 9

B

D
E

A

C B

D
E

A

C

2-Coloring

Why would we want to 2-color a graph?
-We need to divide the vertices into two sets, and edges represent vertices
that can’t be together.

You can modify BFS to come up with a 2-coloring (or determine none exists)
-This is a good exercise!

But coming up with a whole new idea sounds like work.
And we already came up with that cool 2-SAT algorithm.
-Maybe we can be lazy and just use that!
-Let’s reduce 2-Coloring to 2-SAT!

CSE 373 SP 18 - KASEY CHAMPION 10

Use our 2-SAT algorithm
to solve 2-Coloring

A Reduction

We need to describe 2 steps

1. How to turn a graph for a 2-color problem into an input to 2-SAT

2. How to turn the ANSWER for that 2-SAT input into the answer for the original 2-

coloring problem.

How can I describe a two coloring of my graph?

-Have a variable for each vertex – is it red?

How do I make sure every edge has different colors? I need one red endpoint and

one blue one, so this better be true to have an edge from v1 to v2:

(v1IsRed || v2isRed) && (!v1IsRed || !v2IsRed)

CSE 373 SP 18 - KASEY CHAMPION 11

AisRed = True
BisRed = False
CisRed = True
DisRed = False
EisRed = True

B

D
EA

C

B

D EA

C
(AisRed||BisRed)&&(!AisRed||!BisRed)
(AisRed||DisRed)&&(!AisRed||!DisRed)
(BisRed||CisRed)&&(!BisRed||!CisRed)
(BisRed||EisRed)&&(!BisRed||!EisRed)
(DisRed||EisRed)&&(!DisRed||!EisRed)

CSE 373 SP 18 - KASEY CHAMPION 12

Transform Input

2-SAT Algorithm

Transform Output

Efficient

We’ll consider a problem “efficiently solvable” if it has a polynomial time
algorithm.

I.e. an algorithm that runs in time !(#$) where & is a constant.
Are these algorithms always actually efficient?
Well………no

Your #'((((algorithm or even your 2*+
++
⋅ #- algorithm probably aren’t

going to finish anytime soon.
But these edge cases are rare, and polynomial time is good as a low bar
-If we can’t even find an #'((((algorithm, we should probably rethink our
strategy

CSE 373 - 18AU 13

Decision Problems

Let’s go back to dividing problems into solvable/not solvable.
For today, we’re going to talk about decision problems.
Problems that have a “yes” or “no” answer.

Why?
Theory reasons (ask me later).
But it’s not too bad
- most problems can be rephrased as very similar decision problems.

E.g. instead of “find the shortest path from s to t” ask
Is there a path from s to t of length at most !?

CSE 373 - 18AU 14

Running Times

Table from Rosen’s Discrete Mathematics textbook
How big of a problem can we solve for an algorithm with the given running times?
“*” means more than 10#$$ years.

CSE 373 WI19 - KASEY CHAMPION 15

P

The set of all decision problems that have an algorithm that runs in
time ! "# for some constant $.

P (stands for “Polynomial”)

The decision version of all problems we’ve solved in this class are in P.

P is an example of a “complexity class”
A set of problems that can be solved under some limitations (e.g. with
some amount of memory or in some amount of time).

CSE 373 WI19 - KASEY CHAMPION 16

NP

CSE 373 19 SP - KASEY CHAMPION

2-Coloring:
Can you color vertices of a graph
red and blue so every edge has
differently colored endpoints?

Light Spanning Tree:
Is there a spanning tree of graph !
of weight at most "?

2-SAT:
Given a set of variables and a list of
requirements:
(variable==[T/F] || variable==[T/F])
Find a setting of the variables to make
every requirement true.

17

The spanning tree itself.
Verify by checking it really connects
every vertex and its weight. The assignment of variables.

Verify by checking each requirement.

The coloring.
Verify by checking each edge.

The set of all decision problems such that if the
answer is YES, there is a proof of that which can be
verified in polynomial time.

NP (stands for “nondeterministic polynomial”)
Decision Problems such that:
If the answer is YES, you can prove the answer is yes by

Being given a “proof” or a “certificate”
Verifying that certificate in polynomial time.

What certificate would be convenient for short paths?
The path itself. Easy to check the path is really in the
graph and really short.

P vs. NP

No one knows the answer to this question.

In fact, it’s the biggest open problem in Computer Science.

Are P and NP the same complexity class?
That is, can every problem that can be verified in polynomial time
also be solved in polynomial time.

P vs. NP

CSE 373 WI19 - KASEY CHAMPION 18

Hard Problems
Let’s say we want to prove that every problem in NP can actually be solved
efficiently.
We might want to start with a really hard problem in NP.
What is the hardest problem in NP?
What does it mean to be a hard problem?
Reductions are a good definition:
- If A reduces to B then “A ≤ B” (in terms of difficulty)

- Once you have an algorithm for B, you have one for A automatically from the reduction!

CSE 373 WI19 - KASEY CHAMPION 19

NP-Completeness

An NP-complete problem is a “hardest” problem in NP.
If you have an algorithm to solve an NP-complete problem, you have an algorithm
for every problem in NP.
An NP-complete problem is a universal language for encoding “I’ll know it when I
see it” problems.

Does one of these exist?

CSE 373 WI19 - KASEY CHAMPION

The problem B is NP-complete if B is in NP and
for all problems A in NP, A reduces to B.

NP-complete

20

NP-Completeness
An NP-complete problem does exist!

3-SAT is NP-complete
Cook-Levin Theorem (1971)

CSE 373 WI19 - KASEY CHAMPION 21

This sentence (and the proof of it) won Cook the Turing Award.

2-SAT vs. 3-SAT

CSE 373 WI19 - KASEY CHAMPION

Given: A set of Boolean variables, and a list of requirements, each of the form:
variable1==[True/False] || variable2==[True/False]

Find: A setting of variables to “true” and “false” so that all of the requirements
evaluate to “true”

2-Satisfiability (“2-SAT”)

Given: A set of Boolean variables, and a list of requirements, each of the form:

variable1==[True/False]||variable2==[True/False]||variable3==[True/False]

Find: A setting of variables to “true” and “false” so that all of the requirements
evaluate to “true”

3-Satisfiability (“3-SAT”)

22

2-SAT vs. 3-SAT

CSE 373 WI19 - KASEY CHAMPION

Given: A set of Boolean variables, and a list of requirements, each of the form:
variable1==[True/False] || variable2==[True/False]

Find: A setting of variables to “true” and “false” so that all of the requirements

evaluate to “true”

2-Satisfiability (“2-SAT”)

23

Our first try at 2-SAT (just try all variable settings) would have taken ! 2#$
time.

But we came up with a really clever graph that reduced the time to

! % + $ time.

2-SAT vs. 3-SAT

CSE 373 WI19 - KASEY CHAMPION

Given: A set of Boolean variables, and a list of requirements, each of the form:

variable1==[True/False]||variable2==[True/False]||variable3==[True/False]

Find: A setting of variables to “true” and “false” so that all of the requirements
evaluate to “true”

3-Satisfiability (“3-SAT”)

24

Can we do the same for 3-SAT?

For 2-SAT we thought we had 2" options, but we realized that we didn’t have
as many choices as we thought – once we made a few choices, our hand was
forced and we didn’t have to check all possibilities.

NO
recurrence

NO
Big-O

NP-Complete Problems
But Wait! There’s more!

A lot of problems are NP-
complete

Karp’s Theorem (1972)

CSE 373 WI19 - KASEY CHAMPION 25

NP-Complete Problems
But Wait! There’s more!
By 1979, at least 300 problems had been

proven NP-complete.

Garey and Johnson put a list of all the NP-
complete problems they could find in this
textbook.
Took almost 100 pages to just list them all.

No one has made a comprehensive list since.

CSE 373 WI19 - KASEY CHAMPION 26

NP-Complete Problems
But Wait! There’s more!

In the last month, mathematicians and computer scientists have put papers
on the arXiv claiming to show (at least) 25 more problems are NP-complete.

There are literally thousands of NP-complete problems known.
And some of them look weirdly similar to problems we’ve already studied.

CSE 373 WI19 - KASEY CHAMPION 27

Dealing with NP-Completeness

Option 1: Maybe it’s a special case we understand
Maybe you don’t need to solve the general problem, just a special case

Option 2: Maybe it’s a special case we don’t understand (yet)
There are algorithms that are known to run quickly on “nice” instances.
Maybe your problem has one of those.
One approach: Turn your problem into a SAT instance, find a solver and
cross your fingers.

CSE 373 WI19 - KASEY CHAMPION 30

Dealing with NP-Completeness

Option 3: Approximation Algorithms
You might not be able to get an exact answer, but you might be able to get
close.

Given a weighted graph, find a tour (a walk that visits every vertex
and returns to its start) of minimum weight.

Optimization version of Traveling Salesperson

Algorithm:
Find a minimum spanning tree.
Have the tour follow the visitation order of a DFS of the spanning tree.
Theorem: This tour is at most twice as long as the best one.

CSE 373 WI19 - KASEY CHAMPION 31

Why should you care about P vs. NP

Most computer scientists are convinced that P≠NP.

Why should you care about this problem?

It’s your chance for:

$1,000,000. The Clay Mathematics Institute will give $1,000,000 to whoever
solves P vs. NP (or any of the 5 remaining problems they listed)

To get a Turing Award

CSE 373 WI19 - KASEY CHAMPION 32

Why should you care about P vs. NP

Most computer scientists are convinced that P≠NP.

Why should you care about this problem?

It’s your chance for:

$1,000,000. The Clay Mathematics Institute will give $1,000,000 to whoever
solves P vs. NP (or any of the 5 remaining problems they listed)

To get a Turing Award the Turing Award renamed after you.

CSE 373 WI19 - KASEY CHAMPION 33

Why Should You Care if P=NP?

Suppose P=NP.

Specifically that we found a genuinely in-practice efficient algorithm for an
NP-complete problem. What would you do?
-$1,000,000 from the Clay Math Institute obviously, but what’s next?

CSE 373 WI19 - KASEY CHAMPION 34

Why Should You Care if P=NP?

We found a genuinely in-practice efficient algorithm for an NP-complete
problem. What would you do?
-Another $5,000,000 from the Clay Math Institute
-Put mathematicians out of work.
-Decrypt (essentially) all current internet communication.
-No more secure online shopping or online banking or online messaging…or
online anything.

A world where P=NP is a very very different place from the world we live in
now.

CSE 373 WI19 - KASEY CHAMPION 35

Why Should You Care if P≠NP?

We already expect P≠NP. Why should you care when we finally prove it?
P≠NP says something fundamental about the universe.
For some questions there is not a clever way to find the right answer
-Even though you’ll know it when you see it.

There is actually a way to obscure information, so it cannot be found quickly
no matter how clever you are.

CSE 373 WI19 - KASEY CHAMPION 36

Why Should You Care if P≠NP?

To prove P≠NP we need to better understand the differences between
problems.
-Why do some problems allow easy solutions and others don’t?
-What is the structure of these problems?

We don’t care about P vs NP just because it has a huge effect about what
the world looks like.
We will learn a lot about computation along the way.

CSE 373 WI19 - KASEY CHAMPION 37

