
Lecture 27: Array Disjoint
Sets

CSE 373: Data Structures and
Algorithms

CSE 373 19 SP – ZACH CHUN 1

Warmup

CSE 373 SP 19 - ZACH CHUN 2

DisjointSet tree implementation methods recap

findSet(value):

1. jump to the node of value and traverse up to get to the root (representative)

2. after finding the representative do path compression (point every node from the path
you visited to the root directly)

3. return the root (representative) of the set value is in

union(valueA, valueB):

1. call findSet(valueA) and findSet(valueB) to get access to the root (representative) of
both

2. merge by setting one root to point to the other root (one root becomes the parent of
the other root)

- if treeA’s rank == treeB’s rank:
- It doesn’t matter which is the parent so choose arbitrarily. Increase the rank by one.

- otherwise:
- Choose the larger rank tree to become the parent. The rank is just the rank of the parent.

CSE 373 SP 19 - ZACH CHUN 3

Optimized Disjoint Set Runtime
makeSet(x)
Without Optimizations

With Optimizations

findSet(x)
Without Optimizations

With Optimizations

union(x, y)
Without Optimizations

With Optimizations

CSE 373 SP 19 - ZACH CHUN 4

O(1)

on average O(1)

O(n)

O(n)

on average : O(1)

on average : O(1)

Announcements

- hw7 out (due next Friday)
- hw5 p2 feedback went out last night / this morning
- final topics out Monday
- final exam review session next Wed (4pm – 5:50pm)
- please fill out course evals when they come out

CSE 373 SP 19 - ZACH CHUN 5

Instead of nodes, let’s use an array implementation!

Just like heaps, the trees and node objects will exist in our mind, but not in our programs.

It won’t be asymptotically faster, but check out all these benefits:

- this will be more memory compact

- get better caching benefits because we’ll be using arrays

- simplify the implementation

CSE 373 SP 19 - ZACH CHUN 6

Array implementation motivation

What are we going to put in the array and what is
it going to mean?
One of the most common things we do with Disjoint Sets is: go to a node
and traverse upwards to the root (go to your parent, then go to your
parent’s parent, then go to your parent’s parent’s parent, etc.).

A couple of ideas:
• represent each node as a position in our array

• at each node’s position, store the index of the parent node. This will let us
jump to the parent node position in the array, and then we can look up our
parent’s parent node position, etc.

• if we’re storing indices, this mean this is an array of ints

CSE 373 SP 19 - ZACH CHUN 7

This is a big idea!

CSE 373 SP 19 - ZACH CHUN 8

ea

b c d

0 1 2 3 4 5
- - 1 1 0 ?

index

value

at each node’s position, store the index of the
parent node

a e d c b f

f

CSE 373 SP 19 - ZACH CHUN 9

ea

b c d

0 1 2 3 4 5
- - 1 1 0 2

index

value

at each node’s position, store the index of the
parent node

a e d c b f

f

CSE 373 SP 19 - ZACH CHUN 10

uv

x w

t

index

value

Exercise (1 min)
at each node’s position, store the index of the parent
node

z y t x w

z y

0 1 2 3 4 5 6

? ? ? ? ? - -

v u

CSE 373 SP 19 - ZACH CHUN 11

uv

x w

t

index

value

Exercise (1 min)
at each node’s position, store the index of the parent
node

z y t x w

z y

0 1 2 3 4 5 6

3 ? ? ? ? - -

v u

CSE 373 SP 19 - ZACH CHUN 12

uv

x w

t

index

value

Exercise (1 min)
at each node’s position, store the index of the parent
node

z y t x w

z y

0 1 2 3 4 5 6

3 3 ? ? ? - -

v u

CSE 373 SP 19 - ZACH CHUN 13

uv

x w

t

index

value

Exercise (1 min)
at each node’s position, store the index of the parent
node

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 ? ? - -

v u

CSE 373 SP 19 - ZACH CHUN 14

uv

x w

t

index

value

Exercise (1 min)
at each node’s position, store the index of the parent
node

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 ? - -

v u

CSE 373 SP 19 - ZACH CHUN 15

uv

x w

t

index

value

Exercise (1 min)
at each node’s position, store the index of the parent
node

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 - -

v u

CSE 373 SP 19 - ZACH CHUN 16

uv

x w

t

index

value

How would findSet work for array implementation?

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 - -

v u

example : findSet(y)
- look up the index of y in our array (index 1)
- keep traversing till we get to the root / no more

parent indices available
- path compression (set everything to point to the index

of the root - in this case set everything on the path to
5)

- return the index of the root (in this case return 5)

CSE 373 SP 19 - ZACH CHUN 17

uv

x w

t

index

value

How would findSet work for array implementation?
(Looking up the index for a given value)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 - -

v u

In findSet we have to figure out where to start traversing upwards from …

so what index do we use and how do we keep track of the values indices?

(In the above example) basically, how would we map each letter to a position?

Whenever you add new values into your disjoint set,

keep track of what index you stored it at with a dictionary of value to index!

This is similar to the thing as what we did in our ArrayHeap.

This is a big idea!

CSE 373 SP 19 - ZACH CHUN 18

uv

x w

t

index

value

How would findSet work for array implementation?
(What do we store at the root position so we know when to stop?)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 - -

v u

We just mentioned for findSet that we need to traverse starting from a node
(like y) to its parent and then its parent’s parent until we get to a root. What
type of int could we put there as a sign that we’ve reached the root?

CSE 373 SP 19 - ZACH CHUN 19

uv

x w

t

index

value

How would findSet work for array implementation?

(What do we store at the root position so we know when to stop?)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 -3 -3

v u

We just mentioned for findSet that we need to traverse starting from a node

(like y) to its parent and then its parent’s parent until we get to a root. What

type of int could we put there as a sign that we’ve reached the root?

A negative number! (since valid array indices are only 0 and positive numbers)

We’re going to actually be extra clever and store a strictly negative version of rank;

for our root nodes, we’ll store (-1 * rank) - 1.

Note: You can basically count how many levels of nodes there are and

just tack on a negative sign.

This is a big idea!

CSE 373 SP 19 - ZACH CHUN 20

uv

x w

t

index

value

How would findSet work for array implementation?
(after ironing out details)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 -3 -3

v u

example : findSet(y)
- look up the index of y in our array with index

dictionary (index 1)
- keep traversing till we get to the root, signified by

negative numbers
- path compression (set everything to point to the index

of the root - in this case set everything on the path to
5)

- return the index of the root (in this case return 5)

CSE 373 SP 19 - ZACH CHUN 21

u

x w

t

index

value

Exercise (1.5 min) – what happens for findSet(s)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 5 -4 2

s

- look up the index of value in our array with index
dictionary keep traversing till we get to the root,
signified by negative numbers

- path compression (set everything to point to the index
of the root)

- return the index of the root

u

s

CSE 373 SP 19 - ZACH CHUN 22

u

x w t

index

value

Exercise (1.5 min) – what happens for findSet(s)

z y t x w

z y

0 1 2 3 4 5 6

3 3 5 5 5 -4 5

s

- look up the index of value in our array with index
dictionary keep traversing till we get to the root,
signified by negative numbers

- path compression (set everything to point to the index
of the root)

- return the index of the root

u

s

returns 5

CSE 373 SP 19 - ZACH CHUN 23

index

value

How would union work for array implementation?

0 1 2 3
/ / / /

makeSet(u)
makeSet(v)
union(u, v)

note: formula to store in root notes is (-1 * rank) - 1

CSE 373 SP 19 - ZACH CHUN 24

u
index

value

How would union work for array implementation?

u

0 1 2 3
-1 / / /

makeSet(u)

makeSet(v)

union(u, v)

note: formula to store in root notes is (-1 * rank) - 1

CSE 373 SP 19 - ZACH CHUN 25

u
index

value

How would union work for array implementation?

u

0 1 2 3
-1 -1 / /

v

v

makeSet(u)

makeSet(v)

union(u, v)

note: formula to store in root notes is (-1 * rank) - 1

CSE 373 SP 19 - ZACH CHUN 26

u

index

value

How would union work for array implementation?

u

0 1 2 3
1 -1 / /

v

v

makeSet(u)

makeSet(v)

union(u, v)

union – almost the same as before

• update one of the roots to point to the

other root (in this case we had node u’s

position in the array store index 1, as v is

now its parent)

note: formula to store in root notes is (-1 * rank) - 1

CSE 373 SP 19 - ZACH CHUN 27

u

index

value

How would union work for array implementation?

u

0 1 2 3
1 -2 / /

v

v

makeSet(u)

makeSet(v)

union(u, v)

union – almost the same as before

• update one of the roots to point to the

other root (in this case we had node u’s

position in the array store index 1, as v is

now its parent)

• Note: since this was a tie, we update the

rank to be 1 bigger than before. Because

we store (-1 * rank) – 1 in our array, this

actually just the same as subtracting 1.

Before we stored -1 because the rank

was 0, and now when the rank is 1 we’ll

store -2.

note: formula to store in root notes is (-1 * rank) - 1

Exercise maybe
a b c d e f g

already set up all the makeSet calls in the area
-union(a, b)
-union(c, d)
-union(e, f)
-union(a, g)
-union(c, e)
-union(a, c)

CSE 373 SP 18 - KASEY CHAMPION 28

0 1 2 3 4 5 6
-1 -1 -1 -1 -1 -1 -1

Summary of the big ideas
• each node is represented by a position in the int array

• each position stores either:
• the index of its parent, if not the root node
• -1 * (rank + 1), if the root node

• keep track of a dictionary of value to index to be able to jump to a node’s position in the array

• apply all the same high level ideas of how the Disjoint Set methods work (findSet and union) for
trees, but to the array representation
• makeSet – store -1 (rank of 0) in a new slot in the array
• findSet(value) – jump to the value’s position in your array, and traverse till you reach a negative number (signifies

the root). Do path compression and return the index of the root (the representative of this set).
• union(valueA, valueB) – call findSet(valueA) and findSet(valueB) to access the ranks and indices of valueA and

valueB’s sets. Compare the ranks like in the tree representation. You’ll have to be careful when you look up the
rank, as the formula stored is (-1 * rank) – 1. If you need to increase the rank because of a tie in ranks, you can just
subtract 1 from the current value stored (see previous slide).

CSE 373 SP 19 - ZACH CHUN 29

