
Lecture 24: Disjoint Sets CSE 373: Data Structures and 
Algorithms

CSE 373 19 SP – ZACHARY CHUN 1



Warmup
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KruskalMST(Graph G) 
initialize each vertex to be an independent 

component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
update u and v to be in the same component

}
}

Run Kruskal’s algorithm on the following graph to find the MST (minimum spanning tree) of the graph below.
Recall the definition of a minimum spanning tree: a minimum-weight set of edges such that you can get from
any vertex of the graph to any other on only those edges. The set of these edges form a valid tree in the graph.
Below is the provided pseudocode for Kruksal’s algorithm to choose all the edges.

PollEv.com/373lecture 



Announcements

- Kasey out today (no Kasey 2:30 office hours)
- Hw6 released, due next Wednesday
- Hw7 partner form out now, due Monday 11:59pm.  

-If you do not fill out the partner form out on time, Brian will be 
sad because he has to do more work unnecessarily to fix it

- No office hours Monday (Memorial Day)
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What are we doing today?

- Disjoint Set ADT

- Implementing Disjoint Set

Disjoint Set is honestly a very specific ADT/Data structure that has pretty limited realistic uses … 

but it’s exciting because:

- is a cool recap of topics / touches on a bunch of different things we’ve seen in this course 

(trees, arrays, graphs, optimizing runtime, etc.)

- it has a lot of details and is fairly complex – it doesn’t seem like a plus at first, but after you 

learn this / while you’re learning this…you’ve come along way since lists and being able to learn 

new complex data structures is a great skill to have built)
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The Disjoint Set ADT
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Disjoint Sets in mathematics

- “In mathematics, two sets are said to be disjoint sets if they have no 
element in common.” - Wikipedia 
- disjoint = not overlapping
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Kevin

Vivian
Blarry

Sherdil

Velocity

These two sets are disjoint sets

Meredith

Matt Brian

These two sets are not disjoint sets

Matt

Set #1 Set #2 Set #3 Set #4



Disjoint Sets in computer science

In computer science, a disjoint set keeps track of multiple “mini” disjoint 
sets (confusing naming, I know)  
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Kevin

Vivian
Blarry

Sherdil

Velocity

Set #1 Set #2

This overall grey blob thing is the actual 
disjoint set, and it’s keeping track of any 
number of mini-sets, which are all disjoint 
(the mini sets have no overlapping
values).

Note: this might feel really different than ADTs we’ve
run into before.  The ADTs we’ve seen before

(dictionaries, lists, sets, etc.) just store values directly.
But the Disjoint Set ADT is particularly interested in
letting you group your values into sets and 
keep track of which particular set your values are in.

new ADT!



What methods does the DisjointSet ADT have?

Just 3 methods (and one of them is pretty simple!)

- findSet(value)
- union(valueA, valueB)
- makeSet(value)
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findSet(value)
findSet(value) returns some indicator for which particular set the value is in.  You can think of 
this as an ID.  For Disjoint Sets, we often call this the representative.

Examples:

findSet(Brian) 

findSet(Sherdil)

findSet(Velocity)

findSet(Kevin) == findSet(Blarry)
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Kevin

Vivian

Blarry

Sherdil

Velocity

Set #1

Set #2

Brian

Set #3

Set #4

Keanu

Kasey

3

3

2

2

true



What methods does the Disjoint Set ADT have?

Just 3 methods (and one of them is pretty simple!)

- findSet(value)
- union(valueA, valueB)
- makeSet(value)
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union(valueA, valueB)
union(valueA, valueB) merges the set that A is in with the set that B is in.  (basically add the two 
sets together into one)

Example:  union(Blarry,Brian)
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Set #1
Set #3
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Blarry

Sherdil

Velocity

Set #2

Brian

Set #4

Keanu

Kasey

Set #1

Kevin

Vivian

Blarry

Sherdil

Velocity

Set #2 Set #4

Kasey

Brian
Keanu



What methods does the DisjointSet ADT have?

Just 3 methods (and one of them is pretty simple!)

- findSet(value)
- union(valueA, valueB)
- makeSet(value)

CSE 373 SP 18 - KASEY CHAMPION 12



makeSet(value)
makeSet(value) makes a new mini set that just has the value parameter in it.

Examples:

makeSet(Cherie)

makeSet(Anish)
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Kevin

Vivian

Blarry

Sherdil

Velocity

Set #1

Set #2

Brian

Set #3

Set #4

Keanu

Kasey

Cherie

Set #5
Anish
Set #6



Disjoint Set ADT Summary
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Disjoint-Set ADT

makeSet(value) – creates a new set within the disjoint set where the 

only member is the value. Picks id/representative for set

state

behavior

Set of Sets
- Mini sets are disjoint: Elements must be unique across mini sets

- No required order

- Each set has id/representative

findSet(value) – looks up the set containing the value, returns 

id/representative/ of that set

union(x, y) – looks up set containing x and set containing y, combines two 

sets into one.  All of the values of one set are added to the other, and the 

now empty set goes away.



Why are we doing this again?
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Kruskal’s Algorithm Implementation

KruskalMST(Graph G) 
initialize each vertex to be an independent component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
update u and v to be in the same component
add (u,v) to the MST

}
}

KruskalMST(Graph G) 
foreach (V : G.vertices) {

makeSet(v);
}
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(findSet(v) is not the same as findSet(u)){
union(u, v)
add (u, v) to the MST

}
}



Kruskal’s with disjoint sets on the side example
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KruskalMST(Graph G) 
foreach (V : G.vertices) {

makeSet(v);
}
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(findSet(v) is not the same as 
findSet(u)){
union(u, v)

}
}



Why are we doing this again? (continued)
Disjoint Sets help us manage groups of distinct values.  

This is a common idea in graphs, where we want to keep track of different connected 
components of a graph.

In Kruskal’s, if each connected-so-far-island of the graph is its own mini set in our disjoint set,  we 
can easily check that we don’t introduce cycles.  If we’re considering a new edge, we just check 
that the two vertices of that edge are in different mini sets by calling findSet.
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1 min break
Take a second to review notes with your neighbors, ask questions, try to clear up any confusions 
you have… we’ll group back up and see if there are still any unanswered questions then!
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Implementing Disjoint Set
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Implementing Disjoint Set with Dictionaries
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Approach 1: dictionary of value -> set ID/representative Approach 2: dictionary of ID/representative of set 

-> all the values in that set

Sherdil

Robbie

Sarah

1

2

1

1

2 Robbie

Sarah, Sherdil



Exercise (1.5 min)

Calculate the worst case Big O runtimes for each of the methods (makeSet, findSet, union) for 
both approaches.
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Approach 1: dictionary of value -> set 
ID/representative

Approach 2: dictionary of 
ID/representative of set 
-> all the values in that set

Sherdil

Robbie

Sarah

1

2

1

1

2 Robbie

Sarah, Sherdil
approach 1 approach 2

makeSet(value) O(1) O(1)

findSet(value) O(1) O(n)

union(valueA, 
valueB)

O(n) O(n)



Implementing Disjoint Set with Trees (and 
dictionaries) (1)
Each mini-set is now represented as a separate tree.

(Note: using letters/numbers from now on as the values because they’re easier to fit inside the 
nodes)
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a

b

c

1
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1
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ac

e

b

d

e 2

1



Implementing Disjoint Set with Trees (and 
dictionaries) (1)
Each mini-set is now represented as a different tree.

(Note: using letters/numbers from now on as the values because they’re easier to fit inside the 
nodes)
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a

b

c

1

2

1

d

ac

e

b

d

e 2

1

a b c d e

dictionary so you can jump to nodes in the tree



Implementing Disjoint Set with Trees (and 
dictionaries) (2)
union(valueA, valueB) -- the method with the problem runtime from before -- should look a lot 
easier in terms of updating the data structure – all we have to do is change one link so they’re 
connected.  

What should we change?  If we change the root of one to point to the other tree, then all the 
lower things will be updated.  It turns out it will be most efficient if we have the root point to the 
other tree’s root.
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Implementing Disjoint Set with Trees (and 
dictionaries) (3)
findSet has to be different though … 

They all have access to the root node because all the links point up – we can use the root node as 
our id / representative. For example:

findSet(5)

findSet(9)

they’re in the same set because they have the same representative!
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Seems great so far but let’s abuse some stuff
makeSet(a)

makeSet(b)

makeSet(c)
makeSet(d)

makeSet(e)

union(a, b)

union(a, c)

union(a, d)

union(a, e)

findSet (a) – how long will this take?  Could turn into a linked list where you might have to start at 
the bottom and loop all the way to the top.
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Improving union
Problem: Trees can be unbalanced (and look linked-list-like) so our findSet runtime becomes 
closer to N

Solution: Union-by-rank!
- let rank(x) be a number representing the upper bound of the height of x so rank(x) >= height(x)
- Keep track of rank of all trees
- When unioning make the tree with larger rank the root
- If it’s a tie, pick one randomly and increase rank by one
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Practice
Given the following disjoint-set what would be the result of the following calls on union if we add 
the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for 
each tree.
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0

rank = 2

3

1

2

rank = 0

8

10

12

9

rank = 2

11

7

13

rank = 1

union(2, 13)
union(4, 12)
union(2, 8)



Practice
Given the following disjoint-set what would be the result of the following calls on union if we add 
the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for 
each tree.
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union(2, 13)



Practice
Given the following disjoint-set what would be the result of the following calls on union if we add 
the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for 
each tree.
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Practice
Given the following disjoint-set what would be the result of the following calls on union if we add 
the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for 
each tree.
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Practice
Given the following disjoint-set what would be the result of the following calls on union if we add 
the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for 
each tree.
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Does this improve the worst case runtimes?

findSet is more likely to be O(log(n)) than O(n)



Exercise (2 min)
Given the following disjoint-set what would be the result of the following calls on union if we add 
the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for 
each tree.
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union(5, 8)
union(1, 2)
union(7, 3)



Improving findSet()
Problem: Every time we call findSet() you must traverse all the levels of the tree to find 
representative.  If there are a lot of levels (big height), this is more inefficient than need be.

Solution: Path Compression
- Collapse tree into fewer levels by updating parent pointer of each node you visit
- Whenever you call findSet() update each node you touch’s parent pointer to point directly to overallRoot
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Does this improve the 
worst case runtimes?
findSet is more likely to 
be O(1) than O(log(n))



Exercise if time?
Using the union-by-rank and path-compression optimized implementations of disjoint-sets draw 
the resulting forest caused by these calls:
1.makeSet(a)

2.makeSet(b)

3.makeSet(c)

4.makeSet(d)

5.makeSet(e)

6.makeSet(f)

7.makeSet(h)

8.union(c, e)

9.union(d, e)

10.union(a, c)

11.union(g, h)

12.union(b, f)

13.union(g, f)

14.union(b, c)
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Optimized Disjoint Set Runtime
makeSet(x)
Without Optimizations

With Optimizations

findSet(x)
Without Optimizations

With Optimizations

union(x, y)
Without Optimizations

With Optimizations
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O(1)

O(1)

O(n)

O(n)

Best case: O(1) Worst case: O(logn)

Best case: O(1) Worst case: O(logn)



Next time
- union should call findMin to get access to the root of the trees

- why rank is an approximation of height

- array representation instead of tree

- more practice!
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