
Lecture 23: Minimum 
Spanning Trees

CSE 373: Data Structures and 
Algorithms

CSE 373 SP 18 - KASEY CHAMPION 1



Administriva

CSE 373 SP 18 - KASEY CHAMPION 2



Minimum Spanning Trees
It’s the 1920’s. Your friend at the electric company needs to choose where to build wires to 
connect all these cities to the plant. 

CSE 373 SP 18 – ROBBIE WEBBER 3

She knows how much it would cost to lay electric wires between any pair of locations, and wants the cheapest way to 
make sure electricity from the plant to every city.

A

B

D

E

C

3
6

2
1

4

5

8

9
1
0

7



Minimum Spanning Trees
What do we need? A set of edges such that:
- Every vertex touches at least one of the edges. (the edges span the graph)
- The graph on just those edges is connected.
- The minimum weight set of edges that meet those conditions.

Assume all edge weights are positive.

Claim: The set of edges we pick never has a cycle. Why?

MST is the exact number of edges to connect all vertices
- taking away 1 edge breaks connectiveness 
- adding 1 edge makes a cycle
- contains exactly V – 1 edges

4

Notice we do not need a directed graph!

CSE 373 19 WI – KASEY CHAMPION

A

B

D

E

C

3

2

1

4

5
7A

B

D

E

C

3

2

1

4

5
7A

B

D

E

C

3

2

1

4

5
7A

B

D

E

C

3

2

1

4



Aside: Trees 
Our BSTs had:
- A root
- Left and/or right children 
- Connected and no cycles

Our heaps had:
- A root
- Varying numbers of children
- Connected and no cycles

On graphs our tees:
- Don’t need a root (the vertices aren’t ordered, and we can start BFS from anywhere)
- Varying numbers of children
- Connected and no cycles

5

An undirected, connected acyclic graph.
Tree (when talking about graphs)

CSE 373 SP 18 – ROBBIE WEBBER

A

B

D

E

C

3

2

1

4



MST Problem
What do we need? A set of edges such that:
- Every vertex touches at least one of the edges. (the edges span the graph)
- The graph on just those edges is connected.
- The minimum weight set of edges that meet those conditions.

Our goal is a tree!

We’ll go through two different algorithms for this problem today.

6

Given: an undirected, weighted graph G
Find: A minimum-weight set of edges such that you can 
get from any vertex of G to any other on only those 
edges.

Minimum Spanning Tree Problem

CSE 373 SP 18 – ROBBIE WEBBER



Example
Try to find an MST of this graph:

7

A

B

D F

E

C

CSE 373 19 WI – KASEY CHAMPION

BFS
1. Pick an arbitrary starting point
2. Queue up unprocessed neighbors
3. Process next neighbor in queue
4. Repeat until all vertices in queue 

have been processed

Dijkstra’s
1. Start at source
2. Update distance from current to 

unprocessed neighbors
3. Process optimal neighbor
4. Repeat until all vertices have been 

marked processed

Graph Algorithm Toolbox

A

B

D F

E

C



Example
Try to find an MST of this graph:

8

A

B

D F

E

C

3
6

2
1

4

5

8

9
10

7

CSE 373 19 WI – KASEY CHAMPION

BFS
1. Pick an arbitrary starting point
2. Queue up unprocessed neighbors
3. Process next neighbor in queue
4. Repeat until all vertices in queue 

have been processed

Dijkstra’s
1. Start at source
2. Update distance from current to 

unprocessed neighbors
3. Process optimal neighbor
4. Repeat until all vertices have been 

marked processed

Graph Algorithm Toolbox

A

B

D F

E

C

3
6

2
1

4

5

8

9
10

7

A

B

D F

E

C

3
6

2
1

4

5

8

9
10

7

A

B

D F

E

C

3
6

2
1

4

5

8

9
10

7

A

B

D F

E

C

3
6

2
1

4

5

8

9
10

7

A

B

D F

E

C

3
6

2
1

4

5

8

9
10

7



Prim’s Algorithm

CSE 373 SP 18 - KASEY CHAMPION 9

Dijkstra’s
1. Start at source
2. Update distance from current to 

unprocessed neighbors
3. Process optimal neighbor
4. Repeat until all vertices have been 

marked processed

Dijkstra(Graph G, Vertex source) 
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}

Algorithm idea: 
1. choose an arbitrary 

starting point
2. Investigate edges that 

connect unprocessed 
vertices

3. Add the lightest edge to 
solution (be greedy)

4. Repeat until solution 
connects all vertices

Prims(Graph G, Vertex source) 
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}



Try it Out

CSE 373 SP 18 - KASEY CHAMPION 10

PrimMST(Graph G) 
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
foreach(edge (source, v) ) {

v.dist = weight(source,v)
v.bestEdge = (source,v)

}
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
add u.bestEdge to spanning tree
foreach(edge (u,v) leaving u){

if(weight(u,v) < v.dist && v unprocessed ){
v.dist = weight(u,v)
v.bestEdge = (u,v)

}
}
mark u as processed

}

A

B

D F

E

C

50

6

3

4

7

2

8

9
5

7

Vertex Distance Best Edge Processed
A
B
C
D
E
F
G

G

2



Try it Out

CSE 373 SP 18 - KASEY CHAMPION 11

A

B

D F

E

C

50

6

3

4

7

2

8

9
5

7

Vertex Distance Best Edge Processed
A
B
C
D
E
F
G

G

2

-

2
4

7

(A, B)
(A, C)
(A, D)

X ✓
✓

3

50

6

(B, F) ✓
(B, E)

(B, G)

PrimMST(Graph G) 
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
foreach(edge (source, v) ) {

v.dist = weight(source,v)
v.bestEdge = (source,v)

}
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
add u.bestEdge to spanning tree
foreach(edge (u,v) leaving u){

if(weight(u,v) < v.dist && v unprocessed ){
v.dist = weight(u,v)
v.bestEdge = (u,v)

}
}
mark u as processed

}

✓
---2
---5

--------(C, D)
--------(C, E)

✓
✓

✓



Prim’s Runtime

CSE 373 SP 18 - KASEY CHAMPION 12

Dijkstra(Graph G, Vertex source) 
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}

Prims(Graph G, Vertex source) 
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}

Runtime = VlogV + ElogVRuntime = VlogV + ElogV



A different Approach
Prim’s Algorithm started from a single vertex and reached more and more 
other vertices.
Prim’s thinks vertex by vertex (add the closest vertex to the currently 
reachable set).
What if you think edge by edge instead?
Start from the lightest edge; add it if it connects new things to each other 
(don’t add it if it would create a cycle)

This is Kruskal’s Algorithm.



Example
Try to find an MST of this graph by adding edges in sorted order

14CSE 373 19 WI – KASEY CHAMPION

A

B

D
F

E

C

50

6

3

4

7

2

8

9
5

7

G

2

A

B

D
F

E

C

50

6

3

4

7

2

8

9
5

7

G

2

A

B

D
F

E

C

50

6

3

4

7

2

8

9
5

7

G

2

A

B

D
F

E

C

50

6

3

4

7

2

8

9
5

7

G

2

A

B

D
F

E

C

50

6

3

4

7

2

8

9
5

7

G

2

A

B

D
F

E

C

50

6

3

4

7

2

8

9
5

7

G

2

A

B

D
F

E

C

50

6

3

4

7

2

8

9
5

7

G

2



Kruskal’s Algorithm

KruskalMST(Graph G) 
initialize each vertex to be an independent component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
}



Try It Out

A

B

D F

E

C

3 6
2

1

4
5

8

9
10

7

KruskalMST(Graph G) 
initialize each vertex to be an independent component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
}

Edge Include? Reason
(A,C)
(C,E)
(A,B)
(A,D)
(C,D)

Edge (cont.) Inc? Reason
(B,F)
(D,E)
(D,F)
(E,F)
(C,F)



Try It Out

A

B

D F

E

C

3 6
2

1

4
5

8

9
10

7

KruskalMST(Graph G) 
initialize each vertex to be an independent component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
}

Edge Include? Reason
(A,C) Yes
(C,E) Yes
(A,B) Yes
(A,D) Yes
(C,D) No Cycle A,C,D,A

Edge (cont.) Inc? Reason
(B,F) Yes
(D,E) No Cycle A,C,E,D,A
(D,F) No Cycle A,D,F,B,A
(E,F) No Cycle A,C,E,F,D,A
(C,F) No Cycle C,A,B,F,C



Kruskal’s Algorithm Implementation
KruskalMST(Graph G) 

initialize each vertex to be an independent component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
update u and v to be in the same component

}
}

KruskalMST(Graph G) 
foreach (V : vertices) {

makeMST(v);
}
sort edges in ascending order by weight
foreach(edge (u, v)){

if(findMST(v) is not in findMST(u)){
union(u, v)

}
}

+V(makeMST)

+ElogE

+E(2findMST + union)+?
+?

+?

How many times will we call union?
V – 1
-> +Vunion + EfindMST



Appendix: MST Properties, Another 
MST Application

CSE 373 SP 18 - KASEY CHAMPION 19



Why do all of these MST Algorithms Work?

MSTs satisfy two very useful properties:

Cycle Property: The heaviest edge along a cycle is NEVER part of an MST.

Cut Property: Split the vertices of the graph any way you want into two sets A and B. The lightest 
edge with one endpoint in A and the other in B is ALWAYS part of an MST. 

Whenever you add an edge to a tree you create exactly one cycle, you can then remove any edge 
from that cycle and get another tree out. 

This observation, combined with the cycle and cut properties form the basis of all of the greedy 
algorithms for MSTs.

CSE 373 SP 18 - KASEY CHAMPION 20



One More MST application
Let’s say you’re building a new building. 

There are very important building donors coming to visit TOMORROW, 
- and the hallways are not finished. 

You have n rooms you need to show them, connected by the unfinished hallways.

Thanks to your generous donors you have n-1 construction crews, so you can assign one to each 
of that many hallways. 
- Sadly the hallways are narrow and you can’t have multiple crews working on the same hallway. 

Can you finish enough hallways in time to give them a tour?

CSE 373 SP 18 - KASEY CHAMPION 21

Given: an undirected, weighted graph G
Find: A spanning tree such that the weight of the 
maximum edge is minimized.

Minimum Bottleneck Spanning Tree Problem



MSTs and MBSTs

CSE 373 SP 18 - KASEY CHAMPION 22

Given: an undirected, weighted graph G
Find: A spanning tree such that the weight of the 
maximum edge is minimized.

Minimum Bottleneck Spanning Tree Problem
Given: an undirected, weighted graph G
Find: A minimum-weight set of edges such that you 
can get from any vertex of G to any other on only 
those edges.

Minimum Spanning Tree Problem

A

D

B

C3

4

1

2

2
A

D

B

C3

4

1

2

2

Graph on the right is a minimum bottleneck spanning tree, but not a minimum 
spanning tree.



Finding MBSTs
Algorithm Idea: want to use smallest edges. Just start with the smallest edge and add it if it 
connects previously unrelated things (and don’t if it makes a cycle).

Hey wait…that’s Kruskal’s Algorithm!

Every MST is an MBST (because Kruskal’s can find any MST when looking for MBSTs)

but not vice versa (see the example on the last slide). 

If you need an MBST, any MST algorithm will work.

There are also some specially designed MBST algorithms that are faster (see Wikipedia)

Takeaway: When you’re modeling a problem, be careful to really understand what you’re looking 
for. There may be a better algorithm out there.

CSE 373 SP 18 - KASEY CHAMPION 23


