Lecture 18: Implementing Graphs
Administrivia

HW 5 Part 2 due Friday, last day to turn in Monday

Optional: HW 3 regrade to be turned in with your HW 5 Part 2
Dijkstra’s Algorithm

Basic idea: *Greedy* pick the vertex with smallest distance, update other vertices distance based on choice, repeat until all vertices have been processed

(*Greedy* algorithms pick the locally optimal choice at each step and repeat to achieve a global solution)

Algorithm

1. Initialize all vertices initial distance from source. Set source’s distance to 0 and all others to “∞”

2. For all unprocessed vertices
 A. Get the closest unvisited vertex, “current”
 B. Look at each of current’s directly connected neighbors, “next”
 I. Calculate “newDistance” from current to next
 II. If newDistance is shorter than next’s currently stored distance, update next’s distance and predecessor
 C. Mark current as visited

Pseudocode

Dijkstra(Graph G, Vertex source)

initialize distances to ∞

1. mark all vertices unprocessed

mark source as distance 0

2. while(there are unprocessed vertices){
 A. let u be the closest unprocessed vertex
 B. for each(edge (u,v) leaving u){
 I. if(u.dist+weight(u,v) < v.dist){
 v.dist = u.dist+weight(u,v)
 v.predecessor = u
 }
 }
 C. mark u as processed
}
Dijkstra’s Pseudocode

Dijkstra(Graph G, Vertex source)
 initialize distances to ∞
 mark source as distance 0
 mark all vertices unprocessed
 while(there are unprocessed vertices){
 let u be the closest unprocessed vertex
 foreach(edge (u,v) leaving u){
 if(u.dist+weight(u,v) < v.dist){
 v.dist = u.dist+weight(u,v)
 v.predecessor = u
 }
 }
 mark u as processed
 }

Min Priority Queue ADT

state
 Set of comparable values - Ordered by “priority”

behavior
 peek() – find the element with the smallest priority
 insert(value) – add new element to collection
 removeMin() – returns and removes element with the smallest priority
Dijkstra’s Pseudocode

Dijkstra(Graph G, Vertex source)
initialize distances to \(\infty\)
mark source as distance 0
mark all vertices unprocessed
initialize MPQ as a Min Priority Queue, add source
while (there are unprocessed vertices){
 u = MPQ.removeMin();
 foreach (edge (u,v) leaving u) {
 if (u.dist + weight(u,v) < v.dist) {
 v.dist = u.dist + weight(u,v)
 v.predecessor = u
 }
 }
 mark u as processed
}

Min Priority Queue ADT

state
Set of comparable values - Ordered by “priority”

behavior
peek() – find the element with the smallest priority
insert(value) – add new element to collection
removeMin() – returns and removes element with the smallest priority
Dijkstra’s Pseuodocode

Dijkstra(Graph G, Vertex source)

 initialize distances to ∞
 mark source as distance 0
 initialize MPQ as a Min Priority Queue, add source
 while(MPQ is not empty){
 u = MPQ.removeMin();
 foreach(edge (u,v) leaving u){
 oldDist = v.dist; newDist = u.dist+weight(u,v)
 if(newDist < oldDist){
 v.dist = newDist
 v.predecessor = u
 if(oldDist == INFINITY) { MPQ.insert(v) }
 else { MPQ.updatePriority(v, newDist) }
 }
 }
 }

Min Priority Queue ADT

state
- Set of comparable values - Ordered by “priority”

behavior
- **peek()** – find the element with the smallest priority
- **insert(value)** – add new element to collection
- **removeMin()** – returns and removes element with the smallest priority
- **decreaseKey(e, p)** – decreases priority of element e down to p
Dijkstra's Pseudocode

Dijkstra(Graph G, Vertex source)

 for (Vertex v : G.getVertices()) { v.dist = INFINITY; }
G.getVertex(source).dist = 0;
initialize MPQ as a Min Priority Queue, add source

while (MPQ is not empty) {
 u = MPQ.removeMin();
 for (Edge e : u.getEdges(u)) {
 oldDist = v.dist; newDist = u.dist + weight(u,v)
 if (newDist < oldDist) {
 v.dist = newDist
 v.predecessor = u
 if (oldDist == INFINITY) { MPQ.insert(v) }
 else { MPQ.updatePriority(v, newDist) }
 }
 }
}
Dijkstra's Runtime

Dijkstra(Graph G, Vertex source)
+V for (Vertex v : G.getVertices()) { v.dist = INFINITY; }

G.getVertex(source).dist = 0;
initialize MPQ as a Min Priority Queue, add source
while(MPQ is not empty){
 u = MPQ.removeMin(); +logV
 for (Edge e : u.getEdges(u)){
 oldDist = v.dist; newDist = u.dist+weight(u,v)
 if(newDist < oldDist){
 v.dist = newDist
 v.predecessor = u
 if(oldDist == INFINITY) { MPQ.insert(v) }
 else { MPQ.updatePriority(v, newDist) }
 }
 }
}

Code Model = $C_1 + V + V(\log V + E(C_2 + 2\log V))$
= $C_1 + V + V\log V + VEC_2 + VEC_3\log V$

Tight O Bound = $O(VE\log V)$

How often do we actually update the MPQ thanks to this if statement?
E times!
Tight O Bound = $O(V\log V + E\log V)$
More Dijkstra’s Implementation

How do we keep track of vertex costs?
- Create a vertex object with a cost field
- Store a dictionary that maps vertices to costs

How do we find vertex with smallest distance?
- Loop over dictionary of costs to find smallest
- Use a min heap with priority based on distance

How do we keep track of shortest paths?
- Create a vertex object with a predecessor field, update while running Dijkstra’s update fields
- While running Dijkstra’s build dictionary of vertix to edge backpointers

Find shortest path from A to B
- Run Dijkstra’s, navigate backpointers from B to A
Minimum Spanning Trees
Minimum Spanning Trees

It’s the 1920’s. Your friend at the electric company needs to choose where to build wires to connect all these cities to the plant.

She knows how much it would cost to lay electric wires between any pair of locations, and wants the cheapest way to make sure electricity from the plant to every city.
Minimum Spanning Trees

What do we need? A set of edges such that:
- Every vertex touches at least one of the edges. (the edges span the graph)
- The graph on just those edges is connected.
- The minimum weight set of edges that meet those conditions.

Notice we do not need a directed graph!

Assume all edge weights are positive.

Claim: The set of edges we pick never has a cycle. Why?
Aside: Trees

Our BSTs had:
- A root
- Left and/or right children
- Connected and no cycles

Our heaps had:
- A root
- Varying numbers of children
- Connected and no cycles

On graphs our trees:
- Don’t need a root (the vertices aren’t ordered, and we can start BFS from anywhere)
- Varying numbers of children
- Connected and no cycles

Tree (when talking about graphs)
An undirected, connected acyclic graph.
MST Problem

What do we need? A set of edges such that:
- Every vertex touches at least one of the edges. (the edges span the graph)
- The graph on just those edges is connected.
- The minimum weight set of edges that meet those conditions.

Our goal is a tree!

Minimum Spanning Tree Problem

Given: an undirected, weighted graph G
Find: A minimum-weight set of edges such that you can get from any vertex of G to any other on only those edges.

We’ll go through two different algorithms for this problem today.
Example

Try to find an MST of this graph:

Graph Algorithm Toolbox

BFS/DFS
1. Pick an arbitrary starting point
2. Queue up unprocessed neighbors
3. Process next neighbor in queue
4. Repeat until all vertices in queue have been processed

Dijkstra’s
1. Start at source
2. Update distance from current to unprocessed neighbors
3. Process optimal neighbor
4. Repeat until all vertices have been marked processed
Prim’s Algorithm

Algorithm idea:
1. Choose an arbitrary starting point
2. Investigate edges that connect unprocessed vertices
3. Add the lightest edge to solution (be greedy)
4. Repeat until solution connects all vertices

PrimMST(Graph G)
- Initialize distances to \(\infty \)
- Mark source as distance 0
- Mark all vertices unprocessed

Dijkstra’s
1. Start at source
2. Update distance from current to unprocessed neighbors
3. Process optimal neighbor
4. Repeat until all vertices have been marked processed

Dijkstra(Graph G, Vertex source)
- Initialize distances to \(\infty \)
- Mark source as distance 0
- Mark all vertices unprocessed

while (there are unprocessed vertices) {
 let u be the closest unprocessed vertex
 foreach (edge (u, v) leaving u) {
 if (u.dist + weight(u, v) < v.dist) {
 v.dist = u.dist + weight(u, v)
 v.predecessor = u
 }
 }
 mark u as processed
}
Try it Out

PrimMST(Graph G)

initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed

foreach(edge (source, v)) {
 v.dist = weight(source, v)
 v.bestEdge = (source, v)
}

while(there are unprocessed vertices){
 let u be the closest unprocessed vertex
 add u.bestEdge to spanning tree
 foreach(edge (u,v) leaving u){
 if(weight(u, v) < v.dist && v unprocessed){
 v.dist = weight(u, v)
 v.bestEdge = (u, v)
 }
 }
 mark u as processed
}
Try it Out

PrimMST(Graph G)
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed

foreach(edge (source, v)) {
 v.dist = weight(source, v)
 v.bestEdge = (source, v)
}

while(there are unprocessed vertices) {
 let u be the closest unprocessed vertex
 add u.bestEdge to spanning tree
 foreach(edge (u, v) leaving u) {
 if(weight(u, v) < v.dist && v unprocessed) {
 v.dist = weight(u, v)
 v.bestEdge = (u, v)
 }
 }
 mark u as processed
}
A different Approach

Prim’s Algorithm started from a single vertex and reached more and more other vertices.

Prim’s thinks vertex by vertex (add the closest vertex to the currently reachable set).

What if you think edge by edge instead?

Start from the lightest edge; add it if it connects new things to each other (don’t add it if it would create a cycle)

This is Kruskal’s Algorithm.
Kruskal’s Algorithm

KruskalMST(Graph G)
 initialize each vertex to be a connected component
 sort the edges by weight
 foreach(edge (u, v) in sorted order){
 if(u and v are in different components){
 add (u,v) to the MST
 Update u and v to be in the same component
 }
 }
Try It Out

KruskalMST(Graph G)
initialize each vertex to be a connected component
sort the edges by weight
foreach(edge (u, v) in sorted order){
 if(u and v are in different components){
 add (u,v) to the MST
 Update u and v to be in the same component
 }
}

<table>
<thead>
<tr>
<th>Edge</th>
<th>Include?</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A,C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C,E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A,B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A,D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C,D)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Edge (cont.)</th>
<th>Inc?</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B,F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D,E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D,F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E,F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C,F)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Try It Out

KruskalMST(Graph G)

initialize each vertex to be a connected component

sort the edges by weight

foreach(edge (u, v) in sorted order){
 if(u and v are in different components){
 add (u,v) to the MST
 Update u and v to be in the same component
 }
}

<table>
<thead>
<tr>
<th>Edge</th>
<th>Include?</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A,C)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>(C,E)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>(A,B)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>(A,D)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>(C,D)</td>
<td>No</td>
<td>Cycle A,C,D,A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Edge (cont.)</th>
<th>Inc?</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B,F)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>(D,E)</td>
<td>No</td>
<td>Cycle A,C,E,D,A</td>
</tr>
<tr>
<td>(D,F)</td>
<td>No</td>
<td>Cycle A,D,F,B,A</td>
</tr>
<tr>
<td>(E,F)</td>
<td>No</td>
<td>Cycle A,C,E,F,D,A</td>
</tr>
<tr>
<td>(C,F)</td>
<td>No</td>
<td>Cycle C,A,B,F,C</td>
</tr>
</tbody>
</table>
Kruskal’s Algorithm: Running Time

KruskalMST(Graph G)
 initialize each vertex to be a connected component
 sort the edges by weight
 foreach(edge (u, v) in sorted order){
 if(u and v are in different components){
 add (u,v) to the MST
 Update u and v to be in the same component
 }
 }
Kruskal’s Algorithm: Running Time

Running a new BFS in the partial MST, at every step seems inefficient. Do we have an ADT that will work here? Not yet...