
Lecture 22: Implementing
Dijkstra’s

CSE 373: Data Structures and
Algorithms

CSE 373 19 SP - KASEY CHAMPION 1

Administrivia
HW 5 Part 2 due Wednesday

Wednesday Review Session – How to Ace the Technical Interview

CSE 373 SP 18 - KASEY CHAMPION 2

Dijkstra’s Algorithm

Basic idea: Greedily pick the vertex with smallest distance, update other vertices distance based
on choice, repeat until all vertices have been processed

(Greedy algorithms pick the locally optimal choice at each step and repeat to achieve a global solution)

CSE 373 19 WI - KASEY CHAMPION 3

Algorithm

1. Initialize all vertices initial distance from
source. Set source’s distance to 0 and all
others to “∞”

2. For all unprocessed vertices
A. Get the closest unvisited vertex, “current”

B. Look at each of current’s directly connected neighbors,
“next”

I. Calculate “newDistance” from current to next

II. If newDistance is shorter than next’s currently stored distance, update
next’s distance and predecessor

C. Mark current as visited

Pseudocode
Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark all vertices unprocessed
mark source as distance 0
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
for each(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}

1.

I.
B.
A.

C.

2.

II.

Dijkstra’s Run Through

CSE 373 SP 19 - KASEY CHAMPION 4

Vertex Distance Predecessor Processed

S

C

B

T

E

Pseudocode
Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark all vertices unprocessed
mark source as distance 0
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
for each(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}

Dijkstra’s Run Through

CSE 373 SP 19 - KASEY CHAMPION 5

Vertex Distance Predecessor Processed

S 0 No

C ∞ No

B ∞ No

T ∞ No

E ∞ No

Pseudocode
Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark all vertices unprocessed
mark source as distance 0
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
for each(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}

Dijkstra’s Run Through

CSE 373 SP 19 - KASEY CHAMPION 6

Vertex Distance Predecessor Processed

S 0 -- No

C 6 S No

B 1 S No

T ∞ No

E ∞ No

Pseudocode
Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark all vertices unprocessed
mark source as distance 0
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
for each(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}

Dijkstra’s Run Through

CSE 373 SP 19 - KASEY CHAMPION 7

Vertex Distance Predecessor Processed

S 0 -- Yes

C 6 S No

B 1 S No

T ∞ No

E ∞ No

Pseudocode
Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark all vertices unprocessed
mark source as distance 0
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
for each(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}

Dijkstra’s Run Through

CSE 373 SP 19 - KASEY CHAMPION 8

Vertex Distance Predecessor Processed

S 0 -- Yes

C 6 S No

B 1 S Yes

T 6 B No

E 2 B No

Pseudocode
Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark all vertices unprocessed
mark source as distance 0
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
for each(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}

Dijkstra’s Run Through

CSE 373 SP 19 - KASEY CHAMPION 9

Vertex Distance Predecessor Processed

S 0 -- Yes

C 6 S No

B 1 S Yes

T 6 3 E No

E 2 B Yes

Pseudocode
Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark all vertices unprocessed
mark source as distance 0
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
for each(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}

Dijkstra’s Run Through

CSE 373 SP 19 - KASEY CHAMPION 10

Vertex Distance Predecessor Processed

S 0 -- Yes

C 6 S No

B 1 S Yes

T 6 3 E Yes

E 2 B Yes

Pseudocode
Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark all vertices unprocessed
mark source as distance 0
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
for each(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}

Dijkstra’s Pseuodocode

CSE 373 19 WI - KASEY CHAMPION 11

Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark source as distance 0

mark all vertices unprocessed

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

foreach(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){

v.dist = u.dist+weight(u,v)

v.predecessor = u

}

}

mark u as processed

}

Wut?

Min Priority Queue ADT

removeMin() – returns and removes
element with the smallest priority

state

behavior

Set of comparable values -
Ordered by “priority”

peek() – find the element with the
smallest priority

insert(value) – add new element to
collection

Dijkstra’s Pseuodocode

CSE 373 19 WI - KASEY CHAMPION 12

Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark source as distance 0

mark all vertices unprocessed

initialize MPQ as a Min Priority Queue, add source

while(there are unprocessed vertices){

u = MPQ.removeMin();

foreach(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){

v.dist = u.dist+weight(u,v)

v.predecessor = u

}

}

mark u as processed

}

Min Priority Queue ADT

removeMin() – returns and removes
element with the smallest priority

state

behavior

Set of comparable values -
Ordered by “priority”

peek() – find the element with the
smallest priority

insert(value) – add new element to
collection

How?

Dijkstra’s Pseuodocode

CSE 373 19 WI - KASEY CHAMPION 13

Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark source as distance 0

initialize MPQ as a Min Priority Queue, add source

while(MPQ is not empty){

u = MPQ.removeMin();

foreach(edge (u,v) leaving u){

oldDist = v.dist; newDist = u.dist+weight(u,v)

if(newDist < oldDist){

v.dist = newDist

v.predecessor = u

if(oldDist == INFINITY) { MPQ.insert(v) }

else { MPQ.updatePriority(v, newDist) }

}

}

}

Min Priority Queue ADT

removeMin() – returns and removes
element with the smallest priority

state

behavior

Set of comparable values -
Ordered by “priority”

peek() – find the element with the
smallest priority

insert(value) – add new element to
collection

decreaseKey(e, p) – decreases
priority of element e down to p

Wut?

How?

Huh?

Dijkstra’s Pseuodocode

CSE 373 19 WI - KASEY CHAMPION 14

Dijkstra(Graph G, Vertex source)

for (Vertex v : G.getVertices()) { v.dist = INFINITY; }

G.getVertex(source).dist = 0;

initialize MPQ as a Min Priority Queue, add source

while(MPQ is not empty){

u = MPQ.removeMin();

for (Edge e : u.getEdges(u)){

oldDist = v.dist; newDist = u.dist+weight(u,v)

if(newDist < oldDist){

v.dist = newDist

v.predecessor = u

if(oldDist == INFINITY) { MPQ.insert(v) }

else { MPQ.updatePriority(v, newDist) }

}

}

}

Vertex<E>
state

behavior

data
dist
predecessor

…

Edge<E>
state

behavior

vertex1
vertex2
cost

…

getVertices() – return keyset of graph

AdjacencyListGraph<V, E>

state

behavior
Dictionary<V, Set<E>> graph

getEdges(v) – return set of outgoing
edges from given vertex

…

getVertex(value) – return Vertex
with given value stored

Dijkstra’s Runtime

CSE 373 19 WI - KASEY CHAMPION 15

Dijkstra(Graph G, Vertex source)

for (Vertex v : G.getVertices()) { v.dist = INFINITY; }

G.getVertex(source).dist = 0;

initialize MPQ as a Min Priority Queue, add source

while(MPQ is not empty){

u = MPQ.removeMin();

for (Edge e : u.getEdges(u)){

oldDist = v.dist; newDist = u.dist+weight(u,v)

if(newDist < oldDist){

v.dist = newDist

v.predecessor = u

if(oldDist == INFINITY) { MPQ.insert(v) }

else { MPQ.updatePriority(v, newDist) }

}

}

}

+V

+C1

+logV

+logV
+?

+V
+E of 1 V

+C2

Code Model = C1 + V + V(logV + E(C2 + 2logV))
= C1 + V + VlogV + VEC2 + VEC3logV

O Bound = O(VElogV)

This actually doesn’t run all E times
– for every iteration of the outer
loop. It actually will run E times in
total; if every vertex is only
removed from the priority queue
(processed) once, then we will
examine each edge once. So each
line inside this foreach gets
multiplied by a single E instead of E
* V.
Tight O Bound = O(VlogV + ElogV)(assume logV)

More Dijkstra’s Implementation
How do we keep track of vertex costs?
- Create a vertex object with a cost field
- Store a dictionary that maps vertices to costs

How do we find vertex with smallest distance?
- Loop over dictionary of costs to find smallest
- Use a min heap with priority based on distance

How do we keep track of shortest paths?
- Create a vertex object with a predecessor field, update while running Dijkstra’s update fields
- While running Dijkstra’s build dictionary of vertix to edge backpointers

Find shortest path from A to B
- Run Dijkstra’s, navigate backpointers from B to A

CSE 373 SP 18 - KASEY CHAMPION 16

Minimum Spanning Trees

CSE 373 SP 18 - KASEY CHAMPION 17

Minimum Spanning Trees
It’s the 1920’s. Your friend at the electric company needs to choose where to build wires to
connect all these cities to the plant.

CSE 373 SP 18 – ROBBIE WEBBER 18

She knows how much it would cost to lay electric wires between any pair of locations, and wants the cheapest way to
make sure electricity from the plant to every city.

A

B

D

E

C

3
6

2
1

4

5

8

9
1
0

7

Minimum Spanning Trees
What do we need? A set of edges such that:
- Every vertex touches at least one of the edges. (the edges span the graph)
- The graph on just those edges is connected.
- The minimum weight set of edges that meet those conditions.

Assume all edge weights are positive.

Claim: The set of edges we pick never has a cycle. Why?

19

Notice we do not need a directed graph!

CSE 373 19 WI – KASEY CHAMPION

A

B

D

E

C

3

2

1

4

5
7A

B

D

E

C

3

2

1

4

5
7A

B

D

E

C

3

2

1

4

5
7A

B

D

E

C

3

2

1

4

Aside: Trees
Our BSTs had:
- A root
- Left and/or right children
- Connected and no cycles

Our heaps had:
- A root
- Varying numbers of children
- Connected and no cycles

On graphs our tees:
- Don’t need a root (the vertices aren’t ordered, and we can start BFS from anywhere)
- Varying numbers of children
- Connected and no cycles

20

An undirected, connected acyclic graph.
Tree (when talking about graphs)

CSE 373 SP 18 – ROBBIE WEBBER

A

B

D

E

C

3

2

1

4

MST Problem
What do we need? A set of edges such that:
- Every vertex touches at least one of the edges. (the edges span the graph)
- The graph on just those edges is connected.
- The minimum weight set of edges that meet those conditions.

Our goal is a tree!

We’ll go through two different algorithms for this problem today.

21

Given: an undirected, weighted graph G
Find: A minimum-weight set of edges such that you can
get from any vertex of G to any other on only those
edges.

Minimum Spanning Tree Problem

CSE 373 SP 18 – ROBBIE WEBBER

Example
Try to find an MST of this graph:

22

A

B

D F

E

C

3
6

2
1

4

5

8

9
10

7

CSE 373 19 WI – KASEY CHAMPION

BFS/DFS
1. Pick an arbitrary starting point
2. Queue up unprocessed neighbors
3. Process next neighbor in queue
4. Repeat until all vertices in queue

have been processed

Dijkstra’s
1. Start at source
2. Update distance from current to

unprocessed neighbors
3. Process optimal neighbor
4. Repeat until all vertices have been

marked processed

Graph Algorithm Toolbox

A

B

D F

E

C

3
6

2
1

4

5

8

9
10

7

A

B

D F

E

C

3
6

2
1

4

5

8

9
10

7

A

B

D F

E

C

3
6

2
1

4

5

8

9
10

7

A

B

D F

E

C

3
6

2
1

4

5

8

9
10

7

A

B

D F

E

C

3
6

2
1

4

5

8

9
10

7

Prim’s Algorithm

CSE 373 SP 18 - KASEY CHAMPION 23

PrimMST(Graph G)
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
foreach(edge (source, v)) {
v.dist = weight(source,v)
v.bestEdge = (source,v)

}
while(there are unprocessed vertices){
let u be the closest unprocessed vertex
add u.bestEdge to spanning tree
foreach(edge (u,v) leaving u){
if(weight(u,v) < v.dist && v unprocessed){
v.dist = weight(u,v)
v.bestEdge = (u,v)

}
}
mark u as processed

}

Dijkstra’s
1. Start at source
2. Update distance from current to

unprocessed neighbors
3. Process optimal neighbor
4. Repeat until all vertices have been

marked processed

Dijkstra(Graph G, Vertex source)
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}

Algorithm idea:
1. choose an arbitrary

starting point
2. Investigate edges that

connect unprocessed
vertices

3. Add the lightest edge to
solution (be greedy)

4. Repeat until solution
connects all vertices

Try it Out

CSE 373 SP 18 - KASEY CHAMPION 24

PrimMST(Graph G)
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
foreach(edge (source, v)) {

v.dist = weight(source,v)
v.bestEdge = (source,v)

}
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
add u.bestEdge to spanning tree
foreach(edge (u,v) leaving u){

if(weight(u,v) < v.dist && v unprocessed){
v.dist = weight(u,v)
v.bestEdge = (u,v)

}
}
mark u as processed

}

A

B

D F

E

C

50

6

3

4

7

2

8

9
5

7

Vertex Distance Best Edge Processed
A
B
C
D
E
F
G

G

2

Try it Out

CSE 373 SP 18 - KASEY CHAMPION 25

A

B

D F

E

C

50

6

3

4

7

2

8

9
5

7

Vertex Distance Best Edge Processed
A
B
C
D
E
F
G

G

2

-

2
4

7

(A, B)
(A, C)
(A, D)

X ✓
✓

3

50

6

(B, F) ✓
(B, E)

(B, G)

PrimMST(Graph G)
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
foreach(edge (source, v)) {

v.dist = weight(source,v)
v.bestEdge = (source,v)

}
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
add u.bestEdge to spanning tree
foreach(edge (u,v) leaving u){

if(weight(u,v) < v.dist && v unprocessed){
v.dist = weight(u,v)
v.bestEdge = (u,v)

}
}
mark u as processed

}

✓
---2
---5

--------(C, D)
--------(C, E)

✓
✓

✓

A different Approach
Prim’s Algorithm started from a single vertex and reached more and more
other vertices.
Prim’s thinks vertex by vertex (add the closest vertex to the currently
reachable set).
What if you think edge by edge instead?
Start from the lightest edge; add it if it connects new things to each other
(don’t add it if it would create a cycle)

This is Kruskal’s Algorithm.

Kruskal’s Algorithm

KruskalMST(Graph G)
initialize each vertex to be a connected

component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
}

Try It Out

A

B

D F

E

C

3 6
2

1

4
5

8

9
10

7

KruskalMST(Graph G)
initialize each vertex to be a connected component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
} Edge Include? Reason

(A,C)
(C,E)
(A,B)
(A,D)
(C,D)

Edge (cont.) Inc? Reason
(B,F)
(D,E)
(D,F)
(E,F)
(C,F)

Try It Out

A

B

D F

E

C

3 6
2

1

4
5

8

9
10

7

KruskalMST(Graph G)
initialize each vertex to be a connected component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
} Edge Include? Reason

(A,C) Yes
(C,E) Yes
(A,B) Yes
(A,D) Yes
(C,D) No Cycle A,C,D,A

Edge (cont.) Inc? Reason
(B,F) Yes
(D,E) No Cycle A,C,E,D,A
(D,F) No Cycle A,D,F,B,A
(E,F) No Cycle A,C,E,F,D,A
(C,F) No Cycle C,A,B,F,C

Kruskal’s Algorithm: Running Time
KruskalMST(Graph G)

initialize each vertex to be a connected component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
}

Kruskal’s Algorithm: Running Time
Running a new BFS in the partial MST, at every step seems inefficient.
Do we have an ADT that will work here?
Not yet…

CSE 373 SP 18 - KASEY CHAMPION 33

