
Lecture 17: Shortest Paths CSE 373: Data Structures and
Algorithms

CSE 373 19 WI - KASEY CHAMPION 1

Administrivia
How to Ace the Technical Interview Session today!
- 6-8pm
- Sieg 134

No BS CS Career Talk Thursday
- 5:30-6:30
- Bag 131

2CSE 373 19 WI - KASEY CHAMPION

Shortest Paths
How does Google Maps figure out this is the fastest way to get to office hours?

CSE 37318 SU – ROBBIE WEBBER 3

Representing Maps as Graphs
How do we represent a map as a graph? What are the vertices and edges?

4CSE 37318 SU – ROBBIE WEBBER

Representing Maps as Graphs

5

K

R

D

P

HS

4

1 2
2

4

3

5

CSE 37318 SU – ROBBIE WEBBER

Shortest Paths

6

The length of a path is the sum of the edge weights on that path.

Shortest Path Problem
Given: a directed graph G and vertices s and t

Find: the shortest path from s to t

s w

y

u

t

v x

1 4

1

5

4
2 5

6

3

CSE 37318 SU – ROBBIE WEBBER

Unweighted graphs
Let’s start with a simpler version: the edges are all the same weight (unweighted)

If the graph is unweighted, how do we find a shortest paths?

7CSE 37318 SU – ROBBIE WEBBER

Unweighted Graphs
If the graph is unweighted, how do we find a shortest paths?

What’s the shortest path from s to s?
- Well….we’re already there.

What’s the shortest path from s to u or v?
- Just go on the edge from s

From s to w,x, or y?
- Can’t get there directly from s, if we want a length 2 path, have to go through u or v.

8

s t

v

u

y

w

x

CSE 37318 SU – ROBBIE WEBBER

Unweighted Graphs: Key Idea
To find the set of vertices at distance k, just find the set of vertices at distance k-1, and see if any
of them have an outgoing edge to an undiscovered vertex.

Do we already know an algorithm that does something like that?

Yes! BFS!

9

bfsShortestPaths(graph G, vertex source)
toVisit.enqueue(source)
source.dist = 0
while(toVisit is not empty){

current = toVisit.dequeue()
for (v : current.outNeighbors())
{

if (v is unknown){
v.distance = current.distance + 1
v.predecessor = current
toVisit.enqueue(v)
mark v as known

}
}

} CSE 37318 SU – ROBBIE WEBBER

Unweighted Graphs
Use BFS to find shortest paths in this graph.

bfsShortestPaths(graph G, vertex source)
toVisit.enqueue(source)
source.dist = 0
mark source as visited
while(toVisit is not empty){

current = toVisit.dequeue()
for (v : current.outNeighbors()){

if (v is not yet visited){
v.distance = current.distance + 1
v.predecessor = current
toVisit.enqueue(v)
mark v as visited

}
}

}

s t

v

u

y

w

x

CSE 37318 SU – ROBBIE WEBBER

Unweighted Graphs
If the graph is unweighted, how do we find a shortest paths?

11

s t

v

u

y

w

x

1

1

2

2

2

3

bfsShortestPaths(graph G, vertex source)
toVisit.enqueue(source)
source.dist = 0
while(toVisit is not empty){

current = toVisit.dequeue()
for (v : current.outNeighbors())
{

if (v is unknown){
v.distance = current.distance + 1
v.predecessor = current
toVisit.enqueue(v)
mark v as known

}
}

}
CSE 37318 SU – ROBBIE WEBBER

What about the target vertex?

12

Given: a directed graph G and vertices s,t
Find: the shortest path from s to t.

Shortest Path Problem

BFS didn’t mention a target vertex…
It actually finds the shortest path from s to every other vertex.

CSE 37318 SU – ROBBIE WEBBER

Weighted Graphs
Each edge should represent the “time” or “distance” from one vertex to another.

Sometimes those aren’t uniform, so we put a weight on each edge to record that number.

The length of a path in a weighted graph is the sum of the weights along that path.

We’ll assume all of the weights are positive
- For GoogleMaps that definitely makes sense.
- Sometimes negative weights make sense. Today’s algorithm doesn’t work for those graphs
- There are other algorithms that do work.

13CSE 37318 SU – ROBBIE WEBBER

Weighted Graphs: Take 1
BFS works if the graph is unweighted.
Maybe it just works for weighted graphs too?

s tv
w

u
1

20

1

1 1

x
1

CSE 37318 SU – ROBBIE WEBBER

Weighted Graphs: Take 1
BFS works if the graph is unweighted. Maybe it just works for weighted graphs too?

15

s tv

w

u

What went wrong? When we found a shorter path from s to u, we needed to update the
distance to v (and anything whose shortest path went through u) but BFS doesn’t do that.

1

20

1

1 10

∞

∞ ∞ ∞

x

∞11

20 21

2

223

CSE 37318 SU – ROBBIE WEBBER

Weighted Graphs: Take 2

You already do this all the time.
In Homework 3, you reduced implementing a hashset to implementing a
hashmap.

Any time you use a library, you’re reducing your problem to the one the
library solves.
Can we reduce finding shortest paths on weighted graphs to finding them
on unweighted graphs?

Using an algorithm for Problem B to solve Problem A.
Reduction (informally)

Weighted Graphs Take 2
Given a weighted graph, how do we turn it into an unweighted one without
messing up the path lengths?

CSE 37318 SU – ROBBIE WEBBER

Weighted Graphs: A Reduction

s

u

v
t2

2

2

1

1

s

u

v

t

s
u

v
t 2

s
u

v
t2

2

2

1

1
2

Transform Input

Unweighted Shortest Paths

Transform Output

CSE 37318 SU – ROBBIE WEBBER

Weighted Graphs: A Reduction

What is the running time of our
reduction on this graph?

O(|V|+|E|) of the modified
graph, which is…slow.

Does our reduction even work
on this graph?

Ummm….

tl;dr: If your graph’s weights are all small positive integers, this reduction
might work great.
Otherwise we probably need a new idea.

s
u

v
t200

5000

5000

150

1
s

u

v
t!0.5

5000

3

1

CSE 37318 SU – ROBBIE WEBBER

Weighted Graphs: Take 3

So we can’t just do a reduction.

Instead figure out why BFS worked in the unweighted case,
try to make the same thing happen in the weighted case.

How did we avoid this problem:

s
tv

w

u

1

20

1

1 10 3

x

11

21

2

22

CSE 37318 SU – ROBBIE WEBBER

Weighted Graphs: Take 3

In BFS When we used a vertex u to update shortest paths we already knew
the exact shortest path to u.
So we never ran into the update problem

If we process the vertices in order of distance from s, we have a chance.

CSE 37318 SU – ROBBIE WEBBER

Weighted Graphs: Take 3
Goal: Process the vertices in order of distance from s
Idea:
Have a set of vertices that are “known”
-(we know at least one path from s to them).
Record an estimated distance
-(the best way we know to get to each vertex).
If we process only the vertex closest in estimated distance, we won’t ever
find a shorter path to a processed vertex.
- This statement is the key to proving correctness.
- It’s nice if you want to practice induction/understand the algorithm better.

CSE 37318 SU – ROBBIE WEBBER

Dijkstra’s Algorithm

s tv
w

u
1

20

1

1 1

x1

Vertex Distance Predecessor Processed
s
w
x
u
v
t

Dijkstra(Graph G, Vertex source)
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}

CSE 37318 SU – ROBBIE WEBBER

Dijkstra’s Algorithm
Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}
s tv

w
u

1

20

1

1 1

x
1

Vertex Distance Predecessor Processed
s 0 -- Yes
w 1 s Yes
x 2 w Yes
u 20 3 s x Yes
v 4 u Yes
t 5 v Yes

CSE 37318 SU – ROBBIE WEBBER

