SEPATDRTD Y R P N N

Stannis a crown.)

Varys
(AK.A. The Spider
Master.of Whisperers)

"R

Bronn
(Tyrion's selisword)

= Grand Maester Pycelle
___________ 3 [Advisor 1o the Iron Throne)

Matthos Seaworth
{Devoted to Melisandre
and her fire god)

Irri
(C Dony's handmaids)

Davos Seaworth
(Stannis’ right hand man.
Former smuggler)

Doreah

B (Father of the g
Lonnisters)

Stannis
(The eidest Baratheon brother
and rightful heir to the throne)

(Usurpers of the iron Throne ;

Tyrion
(The Imp)

y

They're twins

Lords of Ccsteﬂy Rock. but they do ;'; e
4 Dany's bioodriders Khal Drogo They don't lack for goid. it ond ;
¥, Aggo (Dany killed him They pay their debts. make kids ¢ (Knight of Renly's
” affer awitch put him Jaime Queen Cers@i King Robert Kingsguord)
in a commo) (Kiled the Mad King. , .* " (kiled by @ boar) -
'\ Arys 'lo:gcryer]L" . X
N 2% ks
E‘, f thinks thot these Lords of Highgarden H
*' kids ore A very wealthy family,
l‘»’ King Robert's Rem They are paying for
b Kavarro (Robert's youngesl Renly's war,
w Rakh brother)
- akharo _ Sy The Hound Lords of the Eyrie
v 1f: J ‘
. Tofme Joﬂrey (Joffrey 's dog) and the Vale !
(The youngest) (Now he's king) b £
aenerys Stormborn N : 0 ¥
Mother of Dragons Brienne of Tarth ﬁ
S (agons) {Renly’s Kingsguard) ! (Poisoned) ‘ & ‘
k% Jorah Mormont FRulers of the Seven Kingdoms The Mountain . 7 &
{ (in Exile. Dany's Advisor) | until Robert Baratheon's rebeliion. Myrcella (Tywin's mad dog) . : <

They are blood of the dragon. (Betrothed 10

the Prince of Dome)

(Robin)

/ Viserys o g s < b ko SN TN

I—eCtu re 20: Implementing CSE 373: Data Structures and
Graphs Algorithms

https://visualdatahub.wordpress.com/2013/04/02/a-web-of-thrones-character-relationships/ CSE 373 19 SP - KASEY CHAMPION 1

Administrivia

HW 5 pt 1 due tomorrow
HW 5 pt 2 out today

More Kasey office hours!

CSE 373 19 SP - KASEY CHAMPION 2

‘ Introduction to Graphs

CSE 373 SP 18 - KASEY CHAMPION 3

Inter-data Relationships

Arrays

Categorically associated
Sometimes ordered
Typically independent

Elements only store pure
data, no connection info

Trees

Directional Relationships
Ordered for easy access
Limited connections

Elements store data and
connection info

Graphs

Multiple relationship
connections

Relationships dictate
structure

Connection freedom!

Both elements and
connections can store data

o ©

CSE 373 SP 18 - KASEY CHAMPION

4

Graph: Formal Definition

A graph is defined by a pair of sets G = (V, E) where... @

V is a set of vertices

A vertex or “node” is a data entity @
V={AI BI CI DI EI FI GIH}
E is a set of edges @

An edge is a connection between two vertices

CSE 373 SP 18 - KASEY CHAMPION

Applications

Physical Maps
- Airline maps

- Vertices are airports, edges are flight paths
- Traffic

- Vertices are addresses, edges are streets

Relationships
- Social media graphs

- Vertices are accounts, edges are follower relationships
- Code bases

- Vertices are classes, edges are usage

Influence
- Biology

- Vertices are cancer cell destinations, edges are migration paths

Related topics
- Web Page Ranking

- Vertices are web pages, edges are hyperlinks
- Wikipedia

- Vertices are articles, edges are links

SO MANY MORREEEE
www.allthingsgraphed.com

Thyroid

Lymph nodes (reg)

Lung Liver

Uterus Vagina

CSE 373 SP 18 - KASEY CHAMPION

http://www.allthingsgraphed.com/

Graph Vocabulary
Undirected Graph:

Graph Direction .
Undirected graph — edges have no direction and are two-way 1080

V = { Dany, Drogo, Jon }

Directed graphs — edges have direction and are thus one-way Directed Graph:
V = { Petyr, Catelyn, Ned }

Degree of a Vertex
Degree — the number of edges connected to that vertex

Drogo: 1, Danny: 1, Jon:
In-degree — the number of directed edges that point to a vertex

Petyr : O, Catelyn : 2, Ned :
Out-degree — the number of directed edges that start at a vertex

Petyr: 1, Catelyn : 1, Ned :
CSE 373 SP 18 - KASEY CHAMPION

Graph Vocabulary

Self loop — an edge that starts and ends at the same vertex

Parallel edges — two edges with the same start and end vertices

@>

Simple graph — a graph with no self-loops and no parallel edges

Loras

CSE 373 SP 18 - KASEY CHAMPION

Food for thought

Is a graph valid if there exists a vertex with a degree of 0? Yes

Jaime
Robert

Robert has both an “in degree”

Petyr has an “in degree” of 0 Lyanna has an “out degree” of O and an “out degree” of 0

_ _ Are these valid?
Is this a valid graph?

Yup
Sw=
Sure
Yes!
argaryens
CSE 373 SP 18 - KASEY CHAMPION 10

Implementing a Graph

Implement with nodes...
Implementation gets super messy
What if you wanted a vertex without an edge?

How can we implement without requiring edges to access nodes?

Implement using some of our existing data structures!

CSE 373 SP 18 - KASEY CHAMPION 11

Adjacency Matrix

Assign each vertex a number fromOtoV -1

Create a V x V array of Booleans

If (x,y) € E then arr[x][y] = true

Runtime (in terms of V and E)
get out - edges for a vertex O(v) T
get in — edges for a vertex O(v)
decide if an edge exists O(1)

insert an edge O(1)

delete an edge O(1)

delete a vertex (subject to implementation)

add a vertex (subject to implementation)
How much space is used? @
V2

CSE 373 SP 18 - KASEY CHAMPION 12

Graph Vocabulary

Dense Graph —a graph with a lot of edges

o
argaryens

Sparse Graph — a graph with “few” edges

E€oV)
An Adjacency Matrix seems a waste for a sparse graph...

CSE 373 SP 18 - KASEY CHAMPION 13

Adjacency List

Create a Dictionary of size V from type V to Collection of E

If (x,y) € E then add y to the set associated with the key x

Runtime (in terms of V and E)
get out - edges for a vertex O(1)
get in - edges for a vertex O(V + E)
decide if an edge exists O(1)
insert an edge O(1)
delete an edge O(1)
delete a vertex (subject to implementation)
add a vertex (subject to implementation)

How much space is used?
V+E

(®)

®©

QIO

©
O,

®)

CSE 373 SP 18 - KASEY CHAMPION

14

Walks and Paths

Walk — continuous set of edges leading from vertex to vertex

A list of vertices where if | is some int where 0 < 1 < Vn every pair (Vi, Vi+1) in E is true

Path — a walk that never visits the same vertex twice

Castle Castle
Blay Blay
Winterfell Winterfell
Casterly Casterly

Rock Rock

King’s
Landing

King’s
Landing

CSE 373 SP 18 - KASEY CHAMPION 15

Connected Graphs

Connected graph — a graph where every vertexis Connected Component — a subgraph in
connected to every other vertex via some path. It which any two vertices are connected via
is not required for every vertex to have an edge to some path, but is connected to no

every other vertex additional vertices in the supergraph
. There exists some way to get from each vertex
There exists some way to get from each vertex to within the connected component to every other

every other vertex vertex in the connected component

A vertex with no edges is itself a connected
component
@
@

CSE 373 SP 18 - KASEY CHAMPION

16

‘ Graph Algorithms

CSE 373 SP 18 - KASEY CHAMPION 17

Traversing a Graph

In all previous data structures:
Start at first element

Move to next element
Repeat until end of elements

For graphs — Where do we start? How do we decide where to go next? When do we end?
Pick any vertex to start, mark it “visited”
Put all neighbors of first vertex in a “to be visited” collection
Move onto next vertex in “to be visited” collection
Mark vertex “visited”
Put all unvisited neighbors in “to be visited”
Move onto next vertex in “to be visited” collection

Repeat...

CSE 373 SP 18 - KASEY CHAMPION 18

Breadth First Search

search (graph)
toVisit.enqueue (first vertex)
while (toVisit 1is not empty)
current = toVisit.dequeue ()
for (v : current.neighbors())
if (v 1s not in visited)
toVisit.enqueue (v)
visited.add (current)

Current node: |

Queue: B D ECF GHII

Visited: A B D ECF GH /I

CSE 373 SP 18 - KASEY CHAMPION

19

Breadth First Search Analysis

search (graph) <E>

toVisit.enqueue (first vertex)
while (toVisit 1is not empty)

current = toVisit.dequeue () <:> <E> <:>

for (v : current.neighbors()) <:>
if (v 1s not in visited)

toVisit.enqueue (v) (E)
visited.add (current)

Visited: A B D ECF GH I Q
C

How many times do you visit each node? 1 time each
How many times do you traverse each edge? Max 2 times each
- Putting them into toVisit

- Checking if they’re in toVisit

Runtime? O(V + 2E) = O(V + E) ”graph Iinearn

CSE 373 SP 18 - KASEY CHAMPION 20

Depth First Search (DFS)

BFS uses a queue to order which vertex we move to next
Gives us a growing “frontier” movement across graph
Can you move in a different pattern? Can you use a different data structure?

What if you used a stack instead?

bfs (graph) dfs (graph)
toVisit.enqueue (first vertex) toVisit.push(first vertex)
while(toVisit is not empty) while(toVisit is not empty)
current = toVisit.dequeue () current = toVisit.pop ()
for (V : current.neighbors()) for (V : current.neighbors())
if (V 1s not in wvisited) if (V 1s not in wvisited)
toVisit.enqueue (V) toVisit.push (v)

visited.add (current) visited.add (current)

CSE 373 SP 18 - KASEY CHAMPION

21

Depth First Search

dfs (graph)

toVisit.push (first vertex) (:>
while (toVisit is not empty)

current

toVisit.pop ()
for (V : current.neighbors()) <j> (:>
if (V is not in stack) (i} (:)
toVisit.push (v)

visited.add (current) () <j>

Current node: p

Stack: D 8 El HG (\

Visited: A B E HGF 1|1 CD

How many times do you visit each node? 1 time each
How many times do you traverse each edge? Max 2 times each
- Putting them into toVisit
- Checking if they’re in toVisit
Runtime? O(V + 2E) = O(V + E) “graph linear” CSE 373 SP 18 - KASEY CHAMPION 22

