
Lecture 20: Implementing 
Graphs

CSE 373: Data Structures and 
Algorithms

CSE 373 19 SP - KASEY CHAMPION 1https://visualdatahub.wordpress.com/2013/04/02/a-web-of-thrones-character-relationships/



Administrivia
HW 5 pt 1 due tomorrow

HW 5 pt 2 out today

More Kasey office hours!

CSE 373 19 SP - KASEY CHAMPION 2



Introduction to Graphs

CSE 373 SP 18 - KASEY CHAMPION 3



Inter-data Relationships
Arrays
Categorically associated

Sometimes ordered

Typically independent

Elements only store pure 
data, no connection info

CSE 373 SP 18 - KASEY CHAMPION 4

A

B C

Trees
Directional Relationships

Ordered for easy access

Limited connections

Elements store data and 
connection info

0 1 2

A B C

Graphs
Multiple relationship 
connections

Relationships dictate 
structure

Connection freedom!

Both elements and 
connections can store data

A

B

C



Graph: Formal Definition
A graph is defined by a pair of sets G = (V, E) where…
- V is a set of vertices

- A vertex or “node” is a data entity

- E is a set of edges
- An edge is a connection between two vertices

CSE 373 SP 18 - KASEY CHAMPION 5

A

B

CD

E

F

G

H

V = { A, B, C, D, E, F, G, H }

E = { (A, B), (A, C), (A, D), (A, H), 
(C, B), (B, D), (D, E), (D, F),
(F, G), (G, H)}



Applications

Physical Maps

- Airline maps

- Vertices are airports, edges are flight paths

- Traffic

- Vertices are addresses, edges are streets

Relationships

- Social media graphs

- Vertices are accounts, edges are follower relationships

- Code bases

- Vertices are classes, edges are usage

Influence

- Biology

- Vertices are cancer cell destinations, edges are migration paths 

Related topics

- Web Page Ranking

- Vertices are web pages, edges are hyperlinks

- Wikipedia

- Vertices are articles, edges are links

SO MANY MORREEEE

www.allthingsgraphed.com

CSE 373 SP 18 - KASEY CHAMPION 6

http://www.allthingsgraphed.com/


Graph Vocabulary
Graph Direction
- Undirected graph – edges have no direction and are two-way

- Directed graphs – edges have direction and are thus one-way

Degree of a Vertex
- Degree – the number of edges connected to that vertex

Drogo : 1, Danny : 1, Jon : 1
- In-degree – the number of directed edges that point to a vertex

Petyr : 0, Catelyn : 2, Ned : 1
- Out-degree – the number of directed edges that start at a vertex

Petyr : 1, Catelyn : 1, Ned : 1
CSE 373 SP 18 - KASEY CHAMPION 8

Drogo Dany

Jon

V = { Dany, Drogo, Jon }
E = { (Dany, Drogo), (Dany, Jon) } inferred (Drogo, Dany) and (Jon, Dany)

V = { Petyr, Catelyn, Ned }
E = { (Petyr, Catelyn), (Catelyn, Ned), (Ned, Catelyn) } Petyr

Catelyn

Ned

Undirected Graph:

Directed Graph:



Graph Vocabulary
Self loop – an edge that starts and ends at the same vertex

Parallel edges – two edges with the same start and end vertices

Simple graph – a graph with no self-loops and no parallel edges

CSE 373 SP 18 - KASEY CHAMPION 9

Dany Drogo

Petyr

Margaery Renly

Loras

Brienne



Food for thought

Is a graph valid if there exists a vertex with a degree of 0?

CSE 373 SP 18 - KASEY CHAMPION 10

Petyr has an “in degree” of 0

Robert

Lyanna

Rheagar

Lyanna has an “out degree” of 0

Cersei
Jaime

Robert

Robert has both an “in degree” 
and an “out degree” of 0

Is this a valid graph?

Jon

Yes!

Robert Joffrey Tommen

Stark Lannister

TyrellsTargaryens

Are these valid?
Yup

Sure

Yes

Petyr
Catelyn

Ned

Cersei



Implementing a Graph
Implement with nodes…

Implementation gets super messy

What if you wanted a vertex without an edge?

How can we implement without requiring edges to access nodes?

Implement using some of our existing data structures!

CSE 373 SP 18 - KASEY CHAMPION 11



Adjacency Matrix
A B C D

A T T

B

C T T

D T

CSE 373 SP 18 - KASEY CHAMPION 12

Assign each vertex a number from 0 to V – 1
Create a V x V array of Booleans
If (x,y) ∈ E then arr[x][y] = true

Runtime (in terms of V and E)
- get out - edges for a vertex O(v)
- get in – edges for a vertex O(v)
- decide if an edge exists O(1)
- insert an edge O(1)
- delete an edge O(1)
- delete a vertex (subject to implementation)
- add a vertex (subject to implementation)

How much space is used?
V2

A

B

C

D



Graph Vocabulary
Dense Graph – a graph with a lot of edges

E ∈ Θ(V2)

Sparse Graph – a graph with “few” edges

E ∈ Θ(V)

An Adjacency Matrix seems a waste for a sparse graph… 

CSE 373 SP 18 - KASEY CHAMPION 13

Stark Lannister

TyrellsTargaryens

Jon
Sam

Yoren

Pyp

Eddison



Create a Dictionary of size V from type V to Collection of E

If (x,y) ∈ E then add y to the set associated with the key x

Runtime (in terms of V and E)
- get out - edges for a vertex O(1)
- get in - edges for a vertex O(V + E)
- decide if an edge exists O(1)
- insert an edge O(1)
- delete an edge O(1)
- delete a vertex (subject to implementation)
- add a vertex (subject to implementation)

How much space is used?
V + E

Adjacency List

CSE 373 SP 18 - KASEY CHAMPION 14

0

1

2

3

A

B

C

D

A

B

C

D

B C

B D

A



Walks and Paths
Walk – continuous set of edges leading from vertex to vertex 

A list of vertices where if I is some int where 0 < 1 < Vn every pair (Vi, Vi+1) in E is true

Path – a walk that never visits the same vertex twice

CSE 373 SP 18 - KASEY CHAMPION 15

Winterfell

Castle 
Black

King’s 
Landing

Casterly
Rock

Winterfell

Castle 
Black

King’s 
Landing

Casterly
Rock



Connected Graphs
Connected graph – a graph where every vertex is 
connected to every other vertex via some path. It 
is not required for every vertex to have an edge to 
every other vertex

There exists some way to get from each vertex to 
every other vertex

CSE 373 SP 18 - KASEY CHAMPION 16

Sansa

Robb

Bran

Arya

Rickon

Jon

Dany

Connected Component – a subgraph in 
which any two vertices are connected via 
some path, but is connected to no 
additional vertices in the supergraph
- There exists some way to get from each vertex 

within the connected component to every other 
vertex in the connected component

- A vertex with no edges is itself a connected 
component

Viserys



Graph Algorithms

CSE 373 SP 18 - KASEY CHAMPION 17



Traversing a Graph
In all previous data structures:
1. Start at first element
2. Move to next element
3. Repeat until end of elements

For graphs – Where do we start? How do we decide where to go next? When do we end?

CSE 373 SP 18 - KASEY CHAMPION 18

1. Pick any vertex to start, mark it “visited”
2. Put all neighbors of first vertex in a “to be visited” collection
3. Move onto next vertex in “to be visited” collection
4. Mark vertex “visited”
5. Put all unvisited neighbors in “to be visited”
6. Move onto next vertex in “to be visited” collection
7. Repeat…



Breadth First Search

Current node:

Queue:

Visited:

CSE 373 SP 18 - KASEY CHAMPION 19

F

B

C

D
A

E

G

H

I

A B

A

B E C

D

D F G

BDE

H

E

C

C

F

F

G

G

I

G

H

HI

I

search(graph) 
toVisit.enqueue(first vertex)
while(toVisit is not empty) 

current = toVisit.dequeue()
for (v : current.neighbors())

if (v is not in visited) 
toVisit.enqueue(v)

visited.add(current)



Breadth First Search Analysis

Visited:

CSE 373 SP 18 - KASEY CHAMPION 20

F

B

C

D
A

E

G

H

I

A B D E C F G H I

search(graph) 
toVisit.enqueue(first vertex)
while(toVisit is not empty) 

current = toVisit.dequeue()
for (v : current.neighbors()) 

if (v is not in visited)
toVisit.enqueue(v)

visited.add(current)

Runtime? O(V + 2E) = O(V + E) “graph linear”

How many times do you visit each node?
How many times do you traverse each edge?

1 time each
Max 2 times each
- Putting them into toVisit
- Checking if they’re in toVisit



Depth First Search (DFS)
BFS uses a queue to order which vertex we move to next

Gives us a growing “frontier” movement across graph

Can you move in a different pattern? Can you use a different data structure?

What if you used a stack instead?

CSE 373 SP 18 - KASEY CHAMPION 21

bfs(graph) 
toVisit.enqueue(first vertex)
while(toVisit is not empty) 

current = toVisit.dequeue()
for (V : current.neighbors())

if (V is not in visited) 
toVisit.enqueue(v)

visited.add(current)

dfs(graph) 
toVisit.push(first vertex)
while(toVisit is not empty) 

current = toVisit.pop()
for (V : current.neighbors())

if (V is not in visited) 
toVisit.push(v)

visited.add(current)



Depth First Search

CSE 373 SP 18 - KASEY CHAMPION 22

F

B

C

D
A

E

G

H

I

dfs(graph) 
toVisit.push(first vertex)
while(toVisit is not empty) 

current = toVisit.pop()
for (V : current.neighbors())

if (V is not in stack) 
toVisit.push(v)

visited.add(current)

Current node:

Stack:

Visited: A B

A

B EC

D

D FG

BE

H

E CFG

I

H

H

I

GFICD

Runtime? O(V + 2E) = O(V + E) “graph linear”

How many times do you visit each node?
How many times do you traverse each edge?

1 time each
Max 2 times each
- Putting them into toVisit
- Checking if they’re in toVisit


