
Lecture 18: Intro to
Memory and Caching

CSE 373: Data Structures and
Algorithms

CSE 373 19 SP - KASEY CHAMPION 1

Warm Up

int sum = 0;
int i = 0;
while (i < array.length) {

sum += array[i];
i++;

}
return sum;

CSE 373 SP 19 - KASEY CHAMPION 3

int sum = 0;
Node current = front;
while (current != null) {

sum += current.data;
current = current.next;

}
return sum;

Assuming that the array is the same size as the linked list:

Which do you think is most efficient given what we know?

(we have some tools to estimate runtime / what will take

time, but we will learn more today)

A) Array code

B) Linked List code

C) Tied – both roughly equivalent

Hi!

Who am I? – Zach – one of the TAs for this class, a student here at UW, data structures and
algorithms enthusiast, etc.

I’m just subbing in for this lecture for fun!

Plz help me help you, and ask questions or ask for clarifications whenever – I appreciate the
questions and discussions just as much as Kasey!

CSE 373 SP 19 - KASEY CHAMPION 4

Administrivia

- HW5 part 1 is now out (late)

-going to be due on Thursday because we released it late on Thursday
(and last day to turn in is now Saturday next week)

-HW5 part 2 back on normal schedule, out next Wednesday, due the
following Wednesday

-Grade check-ins / chat with Kasey – she has OH 2:30-4:30 today.

CSE 373 SP 19 - KASEY CHAMPION 5

How do programs and memory relate?
Goal for today:

connect your already existing programming knowledge to a newer understanding of memory and
how it works today.

CSE 373 SP 19 - KASEY CHAMPION 6

How Memory Looks

CSE 373 SP 19 - KASEY CHAMPION 7

RAM (Random-access memory)
- RAM is where data gets stored for the programs you run. Think of it as the main memory
storage location for your programs.

- RAM goes by a ton of different names: memory, main memory, RAM are all names for this same
thing.

CSE 373 SP 19 - KASEY CHAMPION 8

RAM represented as a huge array

CSE 373 SP 19 - KASEY CHAMPION 9

=

This is a main
takeaway

A rough view of int and char data

CSE 373 SP 19 - KASEY CHAMPION 10

int a = 5;
char letter = ‘z’

5 z

A rough view of arrays and linked lists

CSE 373 SP 19 - KASEY CHAMPION 11

int[] array = new int[3];
array[0] = 3;
array[1] = 7;
array[2] = 3;

Node front = new Node(3);
front.next = new Node(7);
front.next.next = new Node(3);

Activity (1.5 min)

Take 1.5 min to talk with the people around you about what you remember about arrays and
linked lists and how they relate to memory. Start by saying anything at all you remember /
think you remember.
If you have time, try to start thinking about what you recalled and how these data structures look
in memory.

CSE 373 SP 18 - KASEY CHAMPION 12

Arrays Linked Lists
- “preallocate memory” – fixed size
- “contiguous”

A rough view of arrays and linked lists

Arrays Linked Lists

- Contiguous in memory

- Simple

- Each node is linked to the next, so not
contiguous in memory

- Each node takes up more space than just
the data itself – also stores pointers to
the next (and prev if it’s doubly-linked)

- More flexible with memory / maybe can
squeeze in nodes in places where we
couldn’t have a full contiguous array of
that size

CSE 373 SP 19 - KASEY CHAMPION 13

A rough view of arrays and linked lists

CSE 373 SP 19 - KASEY CHAMPION 14

int[] array = new int[3];

array[0] = 3;

array[1] = 7;

array[2] = 3;

Node front = new Node(3);

front.next = new Node(7);

front.next.next = new Node(3);

3 7 3

37 3

(drawing singly linked list instead of doubly

because drawings are hard / the two are

similar)

A rough view of some other types
(not the main focus but nice to know)

binary trees?

- they look similar to linked lists: each tree node object is going to be created randomly
somewhere in memory

strings?

- Strings are really a bunch of characters in a particular order. Could probably use either, but
many languages choose to implement a String as an array of characters (Java)

objects?

-An object in memory stores its fields all right next to each other (contiguous in memory). There
a couple of extra things objects also store, see further references.

CSE 373 SP 19 - KASEY CHAMPION 15

How memory is used and moves around

CSE 373 SP 19 - KASEY CHAMPION 16

CSE 373 SP 19 - KASEY CHAMPION 17

CSE 373 SP 19 - KASEY CHAMPION 18

CSE 373 SP 19 - KASEY CHAMPION 19

CSE 373 SP 19 - KASEY CHAMPION 20

CSE 373 SP 19 - KASEY CHAMPION 21

CSE 373 SP 19 - KASEY CHAMPION 22

CSE 373 SP 19 - KASEY CHAMPION 23

CSE 373 SP 19 - KASEY CHAMPION 24

CSE 373 SP 19 - KASEY CHAMPION 25

CSE 373 SP 19 - KASEY CHAMPION 26

CSE 373 SP 19 - KASEY CHAMPION 27

CSE 373 SP 19 - KASEY CHAMPION 28

CSE 373 SP 19 - KASEY CHAMPION 29

CSE 373 SP 19 - KASEY CHAMPION 30

CSE 373 SP 19 - KASEY CHAMPION 31

CSE 373 SP 19 - KASEY CHAMPION 32

CSE 373 SP 19 - KASEY CHAMPION 33

CSE 373 SP 19 - KASEY CHAMPION 34

Solution to Kasey’s traveling problem

If we know Kasey is going to keep eating pears . . . Why not buy a bunch
during a single trip and save them all somewhere closer than the store?

Let’s get Kasey a refrigerator!

CSE 373 SP 19 - KASEY CHAMPION 35

CSE 373 SP 19 - KASEY CHAMPION 36

CSE 373 SP 19 - KASEY CHAMPION 37

CSE 373 SP 19 - KASEY CHAMPION 38

Recap + connecting analogy back to computer

CSE 373 SP 19 - KASEY CHAMPION 39

CSE 373 SP 19 - KASEY CHAMPION 40

RAM

CPU CPU – kind of like the home /

brain of your computer. Pretty

much all computation is done

here and data needs to move
here to do anything significant

with it (math, if checks, normal

statement execution).

Data travels between RAM and
the CPU, but it’s slow

Before

CSE 373 SP 19 - KASEY CHAMPION 41

RAM

CPU

Cache!
Bring a bunch of data
back when you go all the
way to RAM

Bring a bunch of food back when
you go all the way to the store

After

Cache
-Rough definition: a place to store some memory that’s smaller and closer to the
CPU compared to RAM. Because caches are closer to the CPU (where your data
generally needs to go to be computed / modified / acted on) getting data from
cache to CPU is a lot quicker than from RAM to CPU. This means we love when
the data we want to access is conveniently in the cache.

-Generally we always store some data here in hopes that it will be used in the
future and that we save ourselves the distance / time it takes to go to RAM.

- Analogy from earlier: The refrigerator (a cache) in your house to store food closer
to you than the store. Walking to your fridge is much quicker than walking to the
store!

CSE 373 SP 19 - KASEY CHAMPION 42

CSE 373 SP 19 - KASEY CHAMPION 43

RAM

CPU

Cache!
Bring a bunch of data
back when you go all the
way to RAM

Bring a bunch of food back when
you go all the way to the store

After

This is a big
idea!

How is a bunch of memory taken from RAM?

CSE 373 SP 19 - KASEY CHAMPION 44

• Imagine you want to retrieve the 1 at index 4 in
RAM

• Your computer is smart enough to know to grab
some of the surrounding data because computer
designers think that it’s reasonably likely you’ll
want to access that data too.

• To answer the title question, technically the term /
units of transfer is in terms of ‘blocks’.

This is a big idea
(continued)!

How is a bunch of memory taken from RAM?
(continued)

CSE 373 SP 19 - KASEY CHAMPION 45

cache

original data we wanted to look up gets passed back to the cpu

CPU

all the data from the
block gets brought to
the cache

How does this pattern of memory grabbing affect
our programs?
- This should have a major impact on programming with arrays. Say we access an index of an
array that is stored in RAM. Because we grab a whole bunch of contiguous memory even when
we just access one index in RAM, we’ll probably be grabbing other nearby parts of our array and
storing that in our cache for quick access later.

Imagine that the below memory is just an entire array of length 13, with some data in it.

CSE 373 SP 19 - KASEY CHAMPION 46

Just by accessing one element we bring the nearby
elements back with us to the cache. In this case, it’s almost
all of the array!

Activity (4 min)
Come up with 1 scenario (pseudocode or a situation) where you’d immediately benefit from
caching (grabbing a bulk amount of data and bringing all of it to be cached) when using arrays.

Come up with 1 scenario where you might not benefit from caching when using arrays.

CSE 373 SP 19 - KASEY CHAMPION 47

How does caching / your answer to the 2nd question affect Linked Lists or node data
structures in general?

possible answer: Looping through a loop starting at index 0, and just incrementing the index by 1 each
time

possible answer: Jumping around in the array outside of the block of memory grabbed from the
recent trip to RAM or only ever accessing the array in RAM once

possible answer: The data of a Linked list is inherently spread out in memory so grabbing nearby
data probably won’t grab any other nodes in the linked list than the intended one – only by rare
chance would we benefit and get another node close enough nearby.

Another demo, but timed

https://repl.it/repls/MistyroseLinedTransformation

(takes about 15 seconds to run)

CSE 373 SP 19 - KASEY CHAMPION 48

https://repl.it/repls/MistyroseLinedTransformation

Cute gif break
https://www.facebook.com/watch/?v=368140913787278

CSE 373 SP 19 - KASEY CHAMPION 49

https://www.facebook.com/watch/?v=368140913787278

ArrayDictionary vs LinkedList Dictionary
(before (lecture 3) and now)

CSE 373 SP 19 - KASEY CHAMPION 50

ArrayDictionary LinkedDictionary

- put O(n)
- get O(n)
- containsKey O(n)
- remove O(n)

- put O(n)
- get O(n)
- containsKey O(n)
- remove O(n)

Both asymptotic runtimes are the same but we know all those
methods have to loop through all the pairs.. which are either

stored in a array or a linked list. So which is better? In terms of
who benefits from caching, ArrayDictionary.

Java uses separate chaining for their hash tables…

… but Python uses a variant on probing (open addressing)!

Why? It turns out that if you use open addressing, you can gain more caching benefits than if you
use separate chaining.

(Note: there are plenty of reasonable motives to still use chaining, don’t worry.)

CSE 373 SP 19 - KASEY CHAMPION 51

Hashing: Separate chaining vs
Open addressing / Probing
in the context of caching

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/HashMap.java
https://stackoverflow.com/questions/12019434/why-did-the-language-designers-of-java-preferred-chaining-over-open-addressing-f

Summary of caching benefits
- Helps arrays in many typical use cases (especially just looping through it
normally) because we grab a bunch of the array data at once, and can look
up that saved data quicker in the future.

- Doesn’t especially help linked list use cases, as grabbing nearby memory
probably won’t include the next node or any of the other nodes.

Whenever you consider data structure implementations for your ADTs,
arrays almost always have a plus because they have caching benefits. This is
one of the most common points made online to support array
implementations of ADTs.

CSE 373 SP 19 - KASEY CHAMPION 52

this is a big
takeaway!

Some new but related vocabulary
Spatial locality – the tendency for programs/processors to access data in nearby locations to
previously accessed locations

Most of our programs do have spatial locality, just because they do things like looping through an
array going index by index.

Programs that exhibit spatial locality will benefit from the caching that happens by your
computer automatically (the programmer doesn’t have to do anything to make this happen).

CSE 373 SP 19 - KASEY CHAMPION 53

Some new but related vocabulary
Temporal locality – tendency for program / processor to access one piece of data repeatedly

Just like they did with spatial locality, programs that exhibit temporal locality will benefit from the caching
that happens by your computer automatically (the programmer doesn’t have to do anything to make this
happen). Because you accessed data ‘recently’, it should be in the cache for you to access quickly the
second time around.

Many programs exhibit temporal locality:
int result = someMethodCall(…);
for (int i = 0; i < 10; i++) {

System.out.println(result);
}

CSE 373 SP 19 - KASEY CHAMPION 54

Here the variable ‘result’ is accessed
repeatedly so after the first time it is loaded
it’s put into the cache, and afterwards the
lookups can just look in the cache

Activity: (3 min) why m2 would be faster than m1? What
changes could you make to m1 to make it faster? Discuss!

CSE 373 SP 19 - KASEY CHAMPION 55

public void m1(String[] strings) {
for (int i = 0; i < strings.length; i++) {

strings[i] = strings[i].trim();
}
for (int i = 0; i < strings.length; i++) {

strings[i] = strings[i].toLowerCase();
}

}

public void m2(String[] strings) {
for (int i = 0; i < strings.length; i++) {

strings[i] = strings[i].trim();
strings[i] = strings[i].toLowerCase();

}
}

Remember that caches are small,

and so not everything fits into the

cache forever. When caches get full

and want to store new data, they

will evict old data. Often, it’s the

least recently used data that gets

pushed out – see LRU caching

M2 exhibits good temporal locality,

because we access strings[i]

repeatedly so we know strings[i] is in

the cache for when we call

toLowerCase on the next line. M1 on

the other hand … doesn’t have a

guarantee strings[i] is still in the cache

and easy to access.

Memory hierarchy, slowness + size increase,going
towards RAM and DISK

CSE 373 SP 19 - KASEY CHAMPION 56

There are actually multiple caches, and a whole hierarchy
of places to store data on your computer. The more
memory a layer can store, the slower it is to access.

In a sense, RAM is even a cache for Disk storage.

Main Idea Recap
Main ideas:

- RAM / memory is like an array and knowing how data looks inside RAM

- data needs to go to CPU to be processed

- caches help speed up CPU’s need for data from RAM by serving as a closer resource of data

- caching bonuses are usually just for arrays instead of linked lists/node data structures

CSE 373 SP 19 - KASEY CHAMPION 57

References / other reading

CSE 351 Caching Slides

Wikipedia pages on CPU, RAM, and Locality

Another useful metaphor for locality and caching: https://medium.com/@adamzerner/spatial-
and-temporal-locality-for-dummies-b080f2799dd

CSE 373 SP 19 - KASEY CHAMPION 58

https://medium.com/@adamzerner/spatial-and-temporal-locality-for-dummies-b080f2799dd

