
Lecture 16: Midterm recap
+ Heaps ii

CSE 373 Data Structures and
Algorithms

1CSE 373 19 SP - KASEY CHAMPION

Practice: Building a minHeap
Construct a Min Binary Heap by inserting the following values in this order:

5, 10, 15, 20, 7, 2

CSE 373 SP 18 - KASEY CHAMPION 2

Min Binary Heap Invariants
1. Binary Tree – each node has at most 2 children
2. Min Heap – each node’s children are larger than itself
3. Level Complete - new nodes are added from left to right completely filling each level

before creating a new one

10

20 7

15

2

5

percolateUp!

7

10

percolateUp!

2

15

percolateUp!

2

5

Min Priority Queue ADT

removeMin() – returns the element with
the smallest priority, removes it from the
collection

state

behavior

Set of comparable values
- Ordered based on “priority”

peekMin() – find, but do not remove the
element with the smallest priority

insert(value) – add a new element to the
collection

3 Minutes

Administrivia
HW 4 due Wednesday night

HW 5 out Wednesday (partner project)
- Partner form due tonight

How to get get a tech job with Kim Nguyen
- Today 4-5pm PAA

CSE 373 19 SP - KASEY CHAMPION 3

Midterm Grades

4CSE 373 19 SP - KASEY CHAMPION

Course Grade Breakdown
Midterm: 20%
Final Exam: 25%
Individual Assignments: 15%
Partner Projects: 40%

Hashing Trees Tree Method Big O
Code

Modeling
Design

Decisions

1618
22

28.5

65

45.125

51

56.375

49.67456897

1
0

10

20

30

40

50

60

70

Midterm Distribution

Midterm Performance

CSE 373 SP 18 - KASEY CHAMPION 5

Implementing Heaps

CSE 373 19 SP - KASEY CHAMPION 6

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J K L

Fill array in level-order from left to right

How do we find the minimum node?

How do we find the last node?

How do we find the next open space?

How do we find a node’s left child?

How do we find a node’s right child?

How do we find a node’s parent?

!"#$%& ' = ' − 1
2

,$-&.ℎ',0 ' = 2' + 1

#'2ℎ&.ℎ',0 ' = 2' + 2

!$$34'%() = "##[0]

,":&;<0$() = "##[:'=$ − 1]

<!$%>!"?$() = "##[:'=$]

Heap Implementation Runtimes

CSE 373 SP 18 - KASEY CHAMPION 7

E

A

B

D

C

F

0 1 2 3 4 5 6 7

A B C D E F

char peekMin()
timeToFindMin

Tree
Array

char removeMin()
findLastNodeTime + removeRootTime + numSwaps * swapTime

Tree

Array

void insert(char)
findNextSpace + addValue + numSwaps * swapTime

Tree

Array

Θ(1)
Θ(1)

n + 1 + log(n) * 1 Θ(n)

1 + 1 + log(n) * 1 Θ(log(n))

n + 1 + log(n) * 1

1 + 1 + log(n) * 1

Θ(n)

Θ(log(n))

Building a Heap
Insert has a runtime of Θ(log(n))

If we want to insert a n items…

Building a tree takes O(nlog(n))
- Add a node, fix the heap, add a node, fix the heap

Can we do better?
- Add all nodes, fix heap all at once!

CSE 373 SP 18 - KASEY CHAMPION 8

Cleaver building a heap – Floyd’s Method
Facts of binary trees
- Increasing the height by one level doubles the number of possible nodes
- A complete binary tree has half of its nodes in the leaves
- A new piece of data is much more likely to have to percolate down to the bottom than be the smallest element in

heap

1. Dump all the new values into the bottom of the tree
- Back of the array

2. Traverse the tree from bottom to top
- Reverse order in the array

3. Percolate Down each level moving towards overall root

see lecture 16 slides for example / animations

CSE 373 SP 18 - KASEY CHAMPION 9

