

# Lecture 16: Midterm recap + Heaps ii

CSE 373 Data Structures and Algorithms

# *Practice:* Building a minHeap

Construct a Min Binary Heap by inserting the following values in this order:

#### Min Priority Queue ADT

#### state

Set of comparable values

- Ordered based on "priority"

#### behavior

**removeMin()** – returns the element with the <u>smallest</u> priority, removes it from the collection

peekMin() - find, but do not remove the
element with the smallest priority

**insert(value)** – add a new element to the collection

#### 5, 10, 15, 20, 7, 2

#### Min Binary Heap Invariants

- 1. Binary Tree each node has at most 2 children
- 2. Min Heap each node's children are larger than itself
- **3.** Level Complete new nodes are added from left to right completely filling each level before creating a new one



### Administrivia

HW 4 due Wednesday night

HW 5 out Wednesday (partner project)

- Partner form due tonight

How to get get a tech job with Kim Nguyen

- Today 4-5pm PAA

### Midterm Grades







Course Grade Breakdown Midterm: 20% Final Exam: 25% Individual Assignments: 15% Partner Projects: 40%

### Midterm Performance



Ò

#### Implementing Heaps



How do we find the minimum node?

peekMin() = arr[0]

How do we find the last node? lastNode() = arr[size - 1]

How do we find the next open space?

openSpace() = arr[size]

How do we find a node's left child?

leftChild(i) = 2i + 1

How do we find a node's right child?

rightChild(i) = 2i + 2

How do we find a node's parent?

12

13

$$parent(i) = \frac{(i-1)}{2}$$

### Heap Implementation Runtimes



char peekMin()
timeToFindMin

Tree $\Theta(1)$ Array $\Theta(1)$ 

char removeMin()
findLastNodeTime + removeRootTime + numSwaps \* swapTime

**Tree**  $n + 1 + log(n) * 1 \Theta(n)$ 

**Array**  $1 + 1 + \log(n) * 1$   $\Theta(\log(n))$ 

void insert(char)
findNextSpace + addValue + numSwaps \* swapTime

**Tree**  $n + 1 + log(n) * 1 \Theta(n)$ 

**Array**  $1 + 1 + \log(n) * 1$   $\Theta(\log(n))$ 

## Building a Heap

Insert has a runtime of  $\Theta(\log(n))$ 

If we want to insert a n items...

Building a tree takes O(nlog(n))

- Add a node, fix the heap, add a node, fix the heap

Can we do better?

- Add all nodes, fix heap all at once!

# Cleaver building a heap – Floyd's Method

Facts of binary trees

- Increasing the height by one level doubles the number of possible nodes
- A complete binary tree has half of its nodes in the leaves
- A new piece of data is much more likely to have to percolate down to the bottom than be the smallest element in heap
- 1. Dump all the new values into the bottom of the tree
- Back of the array
- 2. Traverse the tree from bottom to top
- Reverse order in the array
- 3. Percolate Down each level moving towards overall root

see lecture 16 slides for example / animations