
Lecture 15: Intro to Heaps CSE 373 Data Structures and 
Algorithms

CSE 373 SP 18 - KASEY CHAMPION

1CSE 373 19 SP - KASEY CHAMPION



Administrivia
Midterm grades out later this week

HW 4 due Wednesday night

HW 5 out Wednesday (partner project)

CSE 373 SP 18 - KASEY CHAMPION 2



Heaps

CSE 373 SP 18 - KASEY CHAMPION 3



Priority Queue ADT

CSE 373 SP 18 - KASEY CHAMPION 4

Min Priority Queue ADT

removeMin() – returns the 

element with the smallest

priority, removes it from the 

collection

state

behavior

Set of comparable values

- Ordered based on “priority”

peekMin() – find, but do not 

remove the element with the 

smallest priority

insert(value) – add a new 

element to the collection

Max Priority Queue ADT

removeMax() – returns the 

element with the largest

priority, removes it from the 

collection

state

behavior

Set of comparable values

- Ordered based on “priority”

peekMax() – find, but do not 

remove the element with the 

largest priority

insert(value) – add a new 

element to the collection

Imagine you have a collection of data from which you 
will always ask for the extreme value

If a Queue is “First-In-First-Out” (FIFO) Priority Queues 
are “Most-Important-Out-First”

Example: Triage, patient in most danger is treated first

Items in Queue must be comparable, Queue manages 

internal sorting 



Let’s start with an AVL tree

What is the worst case for peekMin()?

What is the best case for peekMin()?

Can we do something to guarantee best case for removeMin() and 
peekMin()?

CSE 373 19 SP - KASEY CHAMPION 5

AVLPriorityQueue<E>

removeMin() – traverse 
through tree all the way to 
the left, remove node, 
rebalance if necessary

state

behavior

overallRoot

peekMin() – traverse through 
tree all the way to the left

insert() – traverse through 
tree, insert node in open 
space, rebalance as 
necessary

O(logn)

O(logn)



Binary Heap 
A type of tree with new set of invariants

1. Binary Tree: every node has at most 2 
children

2. Heap: every node is smaller than its child

CSE 373 SP 18 - KASEY CHAMPION 6

8

9 10 2

4 5

3

6 7

1

3. Structure: Each level is “complete” meaning it 
has no “gaps”
- Heaps are filled up left to right

22

36 47

2

4

8 9 10

3

1

5



Self Check - Are these valid heaps?

CSE 373 SP 18 - KASEY CHAMPION 7

Binary Heap Invariants:
1. Binary Tree
2. Heap
3. Complete

2

3

5

7 8

4

9 11 10

5

9 8

6

7

4

3

7

1

6

INVALID

INVALID

VALID

3 Minutes



Implementing peekMin()

CSE 373 SP 18 - KASEY CHAMPION 8

4

5 8

7

10

2

9

11 13

Runtime: O(1)



Implementing removeMin()

CSE 373 SP 18 - KASEY CHAMPION 9

4

5 8

7

10

2

9

11 13

4

5 8

7

10

13

9

11

Structure maintained, heap broken

1.) Return min 
2.) replace with last added 



Implementing removeMin() - percolateDown

CSE 373 SP 18 - KASEY CHAMPION 10

4

5 8

7

10

13

9

11

4

135

13

13

11

Recursively swap parent with smallest child

3.) percolateDown()



Practice: removeMin()

CSE 373 SP 18 - KASEY CHAMPION 11

10

17 14

9

11

5

13

20 2216 15 2419 18

18

18

9

18

11

3 Minutes



Implementing insert()
Algorithm:
- Insert a node to ensure no gaps
- Fix heap invariant
- percolate UP

CSE 373 19 SP - KASEY CHAMPION 12

4

5 8

7

10

2

9

11 13 3

3

8

3

4



Practice: Building a minHeap
Construct a Min Binary Heap by inserting the following values in this order:

5, 10, 15, 20, 7, 2

CSE 373 SP 18 - KASEY CHAMPION 13

Min Binary Heap Invariants
1. Binary Tree – each node has at most 2 children
2. Min Heap – each node’s children are larger than itself
3. Level Complete - new nodes are added from left to right completely filling each level 

before creating a new one

10

20 7

15

2

5

percolateUp!

7

10

percolateUp!

2

15

percolateUp!

2

5

Min Priority Queue ADT

removeMin() – returns the element with 
the smallest priority, removes it from the 
collection

state

behavior

Set of comparable values
- Ordered based on “priority”

peekMin() – find, but do not remove the 
element with the smallest priority

insert(value) – add a new element to the 
collection

3 Minutes



minHeap runtimes
removeMin():
- Find and remove minimum node
- Find last node in tree and swap to top level
- Percolate down to fix heap invariant

CSE 373 SP 18 - KASEY CHAMPION 14

insert():
- Insert new node into next available spot
- Percolate up to fix heap invariant



Implementing Heaps

CSE 373 19 SP - KASEY CHAMPION 15

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J K L

Fill array in level-order from left to right

How do we find the minimum node?

How do we find the last node?

How do we find the next open space?

How do we find a node’s left child?

How do we find a node’s right child?

How do we find a node’s parent?

!"#$%& ' = ' − 1
2

,$-&.ℎ',0 ' = 2' + 1

#'2ℎ&.ℎ',0 ' = 2' + 2

!$$34'%() = "##[0]

,":&;<0$() = "##[:'=$ − 1]

<!$%>!"?$() = "##[:'=$]



Heap Implementation Runtimes

CSE 373 SP 18 - KASEY CHAMPION 16

E

A

B

D

C

F

0 1 2 3 4 5 6 7

A B C D E F

char peekMin()
timeToFindMin

Tree
Array

char removeMin()
findLastNodeTime + removeRootTime + numSwaps * swapTime

Tree

Array

void insert(char)
findNextSpace + addValue + numSwaps * swapTime

Tree

Array

Θ(1)
Θ(1)

n + 1 + log(n) * 1 Θ(n)

1 + 1 + log(n) * 1 Θ(log(n))

n + 1 + log(n) * 1

1 + 1 + log(n) * 1

Θ(n)

Θ(log(n))



Building a Heap
Insert has a runtime of Θ(log(n))

If we want to insert a n items…

Building a tree takes O(nlog(n))
- Add a node, fix the heap, add a node, fix the heap

Can we do better?
- Add all nodes, fix heap all at once!

CSE 373 SP 18 - KASEY CHAMPION 17



Cleaver building a heap – Floyd’s Method
Facts of binary trees
- Increasing the height by one level doubles the number of possible nodes
- A complete binary tree has half of its nodes in the leaves
- A new piece of data is much more likely to have to percolate down to the bottom than be the smallest element in 

heap

1. Dump all the new values into the bottom of the tree
- Back of the array

2. Traverse the tree from bottom to top
- Reverse order in the array

3. Percolate Down each level moving towards overall root

CSE 373 SP 18 - KASEY CHAMPION 18



Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY CHAMPION 19

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9



Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY CHAMPION 20

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

7

10



Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY CHAMPION 21

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 157 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 102 9

7

10

2

11

3

5 6

11

keep percolating down
like normal here and swap 5 and 4



Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY CHAMPION 22

8

12

5

3

5

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 8 157 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2
4. percolateDown level 1

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 4 113 102 9

7

10

23

4

2

12

6

11



Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY CHAMPION 23

8

12

5

3

5

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 8 1576

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2
4. percolateDown level 1

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

124 113 102 9

7

10

23

4

2

6

1112

6

11



Floyd’s Heap Runtime
We step through each node – n

We call percolateDown() on each n – log n
thus it’s O(nlogn) 
… let’s look closer…

Are we sure percolateDown() runs log n each time?
- Half the nodes of the tree are leaves

- Leaves run percolate down in constant time
- ¼ the nodes have at most 1 level to travel
- 1/8 the nodes have at most 2 levels to travel
- etc…

work(n) ≈ n/2 * 1 + n/4 * 2 + n/8 * 3 + …

CSE 373 SP 18 - KASEY CHAMPION 24



Closed form Floyd’s buildHeap
work(n) ≈ !" * 1 + !# * 2 + !$ * 3 + …

factor out n

work(n) ≈ n(%" + "# + &$ + …)

CSE 373 SP 18 - KASEY CHAMPION 25

'()* + ≈ +-
./%

? 1
2.

'()* + ≈ + -
./%

3456 1
2. 17 − 1 < ; < 1 <ℎ>+-

./?

@
;. = 1

1 − ; = ;

Infinite geometric series

'()* + ≈ + -
./%

3456 1
2. ≤ +-

./?

@ 1
2. = + ∗ 2

find a pattern -> powers of 2 work(n) ≈ n( %"D + ""E + &"F + …)

? = how many levels = height of tree = log(n)

Floyd’s buildHeap runs in O(n) time!

Summation!


